云環(huán)境下能量高效的任務(wù)調(diào)度方法研究與應(yīng)用
[Abstract]:With the development and application of the information technology, the data generated in each industry is exploding. The traditional database technology can not solve the large-scale data application problem such as massive data, high concurrency, fast response, and expandability. Therefore, how to efficiently store and manage these data is a problem that needs to be solved at present. The economics, scalability and fault-tolerance of cloud computing make it the supporting technology of large data management. With the wide application of cloud computing, the number and size of the data center are growing rapidly, and the cost of the electricity bill has exceeded the purchase cost of the hardware equipment itself, and is still in the state of continuous growth. The rapid increase of energy consumption also exacerbates the global energy crisis and environmental pollution. So it is urgent to study the energy-efficient data management technology in the cloud environment. The energy efficient task scheduling technology in the cloud environment is an important part of the energy efficient data management technology in the cloud environment, and the aim of the invention is to reduce the energy consumption of the node used for task processing in the task processing process through the method of task scheduling. This paper studies the energy efficient task scheduling technology in the cloud environment from the single node and the multi-node. The main innovation points of this paper are as follows: (1) Since the energy efficient task scheduling method on the existing multi-core processor nodes generally assumes that the states of the respective cores can be controlled independently, only the energy consumption of the processor itself is taken into account in the energy consumption calculation stage, and the energy consumption of other components of the nodes is not taken into account, and therefore, a cost-aware task scheduling framework for a plurality of kernel structures is proposed. and comprehensively considering the static power consumption, the dynamic power consumption of the processor and the power consumption of other components of the node, and the time cost and the energy cost of the task processing are carried out by using the economic cost metric node, and the task processing time, the waiting time and the energy consumption cost are unified. On the basis of this, the different task scheduling algorithms are designed for the processor of the three kernel architectures, such as the independent control, the whole control and the packet control. using the scheduling framework and the task scheduling algorithm, the task processing cost of the nodes can be reduced; when the core is an independent control structure, the more the load is lighter; the more obvious the advantages of the method relative to the traditional method; when the core is an integral control structure, As the load increases the cost of the node of the method is lower than that of the traditional method and the gap between the two is larger and larger; when the core is a packet control structure, the node cost of the method is reduced by a plurality of times compared with the traditional method. and (2) the energy-efficient data-intensive task scheduling method of the existing cloud environment task layer mainly realizes the energy efficiency by changing the data storage strategy, and the method is related to the specific data storage method and the storage medium, does not have the universality, and therefore, an energy-efficient data-intensive task processing method, EABD, which is independent of the data storage strategy under the environment of a homogeneous node is proposed. in the task scheduling process, the node number of the processing task and the load balance among the nodes are comprehensively considered, and the energy consumption in the task processing process is reduced. Although the method uses more node processing tasks with respect to the conventional method, the energy consumption in its task processing is smaller than that of the conventional method, and in some cases its energy consumption is even less than 50% of the conventional method. The energy consumption of the algorithm is less affected by the number of copies, and the energy wasted by this algorithm is minimized in the case of a default of 3 copies. (3) A data-intensive task processing method, MinBalance, which is independent of the data storage strategy and the storage medium under the environment of a heterogeneous node is proposed, and the task scheduling process is divided into two steps: node selection and load balancing. in the node selection process, four different node weight values are defined, and the task processing is carried out according to the node with the smallest selection value of the greedy algorithm. the load balancing stage equalizes the load of the node participating in the task processing, and reduces the energy waste caused by the node waiting. The method fully considers the heterogeneity of the performance and power consumption of the node, reduces the energy consumption of the task processing, and when the amount of data to be processed is large, the MinBalance can reduce the energy consumption of about 60%. and (4) aiming at the problem that the current energy efficient virtual machine scheduling method mainly considers the task characteristics and the resource allocation, and only reduces the energy consumption by reducing the use quantity of the nodes, and proposes an energy efficient virtual machine scheduling algorithm EEVS under the cloud environment. first, the virtual machine is allocated to a physical machine that has sufficient resources and the optimal performance power is higher than the highest, and energy consumption is reduced from the node layer. During the execution of the virtual machine, the single-node energy-saving technology based on the DVFS is adopted, the resource integration is carried out through the migration of the virtual machine, the energy consumption of each physical machine is reduced, and the energy consumption of the system is further reduced from the component layer. The EEVS algorithm can save more than 10% of the energy consumption without causing significant efficiency degradation. (5) For the current cloud computing application, only the feasibility and efficiency of the method are considered, and the problem of energy consumption optimization and the like is not paid attention to, and the energy consumption problem of the frequent pattern mining used in data mining is analyzed and analyzed. According to the energy efficient task scheduling method proposed in this paper, an energy efficient task scheduler (EScheduler) is designed to efficiently and efficiently schedule the Map tasks in frequent pattern mining in the cloud environment, so as to reduce the energy consumption of the system. Frequent pattern mining is carried out on a cloud platform composed of four nodes, and the results show that the EEScheduler can reduce the energy consumption of more than 60%.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP301.6
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王立冬,張凱;Java虛擬機(jī)分析[J];北京理工大學(xué)學(xué)報(bào);2002年01期
2 曹曉剛;;Java虛擬機(jī)的10年[J];程序員;2005年07期
3 宋韜;盤細(xì)平;羅元柯;倪國軍;;Java虛擬機(jī)在嵌入式DSP系統(tǒng)上的實(shí)現(xiàn)[J];計(jì)算機(jī)應(yīng)用與軟件;2007年04期
4 劉黎波;;Java虛擬機(jī)攔截原理研究[J];科技風(fēng);2008年21期
5 劉治波;;Java虛擬機(jī)簡(jiǎn)析[J];濟(jì)南職業(yè)學(xué)院學(xué)報(bào);2008年01期
6 郝帥;;Java虛擬機(jī)中相關(guān)技術(shù)的探討[J];成功(教育);2008年08期
7 李霞;;系統(tǒng)虛擬機(jī)關(guān)鍵技術(shù)研究[J];微型電腦應(yīng)用;2010年03期
8 鄭曉瓏;孔挺;;虛擬機(jī)的安全風(fēng)險(xiǎn)與管理[J];硅谷;2010年16期
9 李學(xué)昌;平淡;;為速度而戰(zhàn),虛擬機(jī)內(nèi)外兼修[J];電腦愛好者;2010年18期
10 王惠萍;張海龍;馮帆;王建華;;Java虛擬機(jī)使用及優(yōu)化[J];計(jì)算機(jī)與網(wǎng)絡(luò);2010年21期
相關(guān)會(huì)議論文 前10條
1 孟廣平;;虛擬機(jī)漂移網(wǎng)絡(luò)連接方法探討[A];中國計(jì)量協(xié)會(huì)冶金分會(huì)2011年會(huì)論文集[C];2011年
2 段翼真;王曉程;;可信安全虛擬機(jī)平臺(tái)的研究[A];第26次全國計(jì)算機(jī)安全學(xué)術(shù)交流會(huì)論文集[C];2011年
3 李明宇;張倩;呂品;;網(wǎng)絡(luò)流量感知的虛擬機(jī)高可用動(dòng)態(tài)部署研究[A];2014第二屆中國指揮控制大會(huì)論文集(上)[C];2014年
4 林紅;;Java虛擬機(jī)面向數(shù)字媒體的應(yīng)用研究[A];計(jì)算機(jī)技術(shù)與應(yīng)用進(jìn)展——全國第17屆計(jì)算機(jī)科學(xué)與技術(shù)應(yīng)用(CACIS)學(xué)術(shù)會(huì)議論文集(上冊(cè))[C];2006年
5 楊旭;彭一明;刑承杰;李若淼;;基于VMware vSphere 5虛擬機(jī)的備份系統(tǒng)實(shí)現(xiàn)[A];中國高等教育學(xué)會(huì)教育信息化分會(huì)第十二次學(xué)術(shù)年會(huì)論文集[C];2014年
6 沈敏虎;查德平;劉百祥;趙澤宇;;虛擬機(jī)網(wǎng)絡(luò)部署與管理研究[A];中國高等教育學(xué)會(huì)教育信息化分會(huì)第十次學(xué)術(shù)年會(huì)論文集[C];2010年
7 李英壯;廖培騰;孫夢(mèng);李先毅;;基于云計(jì)算的數(shù)據(jù)中心虛擬機(jī)管理平臺(tái)的設(shè)計(jì)[A];中國高等教育學(xué)會(huì)教育信息化分會(huì)第十次學(xué)術(shù)年會(huì)論文集[C];2010年
8 朱欣焰;蘇科華;毛繼國;龔健雅;;GIS符號(hào)虛擬機(jī)及實(shí)現(xiàn)方法研究[A];《測(cè)繪通報(bào)》測(cè)繪科學(xué)前沿技術(shù)論壇摘要集[C];2008年
9 于洋;陳曉東;俞承芳;李旦;;基于FPGA平臺(tái)的虛擬機(jī)建模與仿真[A];2007'儀表,自動(dòng)化及先進(jìn)集成技術(shù)大會(huì)論文集(一)[C];2007年
10 丁濤;郝沁汾;張冰;;內(nèi)核虛擬機(jī)調(diào)度策略的研究與分析[A];'2010系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2010年
相關(guān)重要報(bào)紙文章 前10條
1 ;虛擬機(jī)的生與死[N];網(wǎng)絡(luò)世界;2008年
2 本報(bào)記者 卜娜;高性能Java虛擬機(jī)將在中國云市場(chǎng)釋能[N];中國計(jì)算機(jī)報(bào);2012年
3 本報(bào)記者 邱燕娜;如何告別虛擬機(jī)管理煩惱[N];中國計(jì)算機(jī)報(bào);2012年
4 ;首批通過云計(jì)算產(chǎn)品虛擬機(jī)管理測(cè)評(píng)名單[N];中國電子報(bào);2014年
5 申琳;虛擬機(jī)泛濫 系統(tǒng)安全怎么辦[N];中國計(jì)算機(jī)報(bào);2008年
6 Tom Henderson邋沈建苗 編譯;虛擬機(jī)管理的五大問題[N];計(jì)算機(jī)世界;2008年
7 盆盆;真實(shí)的虛擬機(jī)[N];中國電腦教育報(bào);2004年
8 本版編輯 綜合 編譯整理 田夢(mèng);管理好虛擬機(jī)的全生命周期[N];計(jì)算機(jī)世界;2008年
9 李婷;中國研制出全球最快反病毒虛擬機(jī)[N];人民郵電;2009年
10 張弛;虛擬機(jī)遷移走向真正自由[N];網(wǎng)絡(luò)世界;2010年
相關(guān)博士學(xué)位論文 前10條
1 宋翔;多核虛擬環(huán)境的性能及可伸縮性研究[D];復(fù)旦大學(xué);2014年
2 王桂平;云環(huán)境下面向可信的虛擬機(jī)異常檢測(cè)關(guān)鍵技術(shù)研究[D];重慶大學(xué);2015年
3 周真;云平臺(tái)下運(yùn)行環(huán)境感知的虛擬機(jī)異常檢測(cè)策略及算法研究[D];重慶大學(xué);2015年
4 郭芬;面向虛擬機(jī)的云平臺(tái)資源部署與調(diào)度研究[D];華南理工大學(xué);2015年
5 周傲;高可靠云服務(wù)供應(yīng)關(guān)鍵技術(shù)研究[D];北京郵電大學(xué);2015年
6 劉圣卓;面向虛擬集群的鏡像存儲(chǔ)與傳輸優(yōu)化[D];清華大學(xué);2015年
7 彭成磊;云數(shù)據(jù)中心綠色節(jié)能需求的虛擬機(jī)負(fù)載均衡技術(shù)研究[D];南京大學(xué);2016年
8 趙長名;IaaS云中基于資源感知的虛擬機(jī)資源管埋[D];電子科技大學(xué);2016年
9 許小龍;支持綠色云計(jì)算的資源調(diào)度方法及關(guān)鍵技術(shù)研究[D];南京大學(xué);2016年
10 衷宜;虛擬化系統(tǒng)中的軟件自愈相關(guān)技術(shù)研究[D];南京理工大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 潘飛;負(fù)載相關(guān)的虛擬機(jī)放置策略研究[D];杭州電子科技大學(xué);2011年
2 王建一;混合型桌面云高可用性研究與實(shí)現(xiàn)[D];華南理工大學(xué);2015年
3 周衡;云計(jì)算環(huán)境下虛擬機(jī)優(yōu)化調(diào)度策略研究[D];河北大學(xué);2015年
4 羅仲皓;基于OpenStack的私有云計(jì)算平臺(tái)的設(shè)計(jì)與實(shí)現(xiàn)[D];華南理工大學(xué);2015年
5 李子堂;面向負(fù)載均衡的虛擬機(jī)動(dòng)態(tài)遷移優(yōu)化研究[D];遼寧大學(xué);2015年
6 張煜;基于OpenStack的“實(shí)驗(yàn)云”平臺(tái)的研究與開發(fā)[D];西南交通大學(xué);2015年
7 曾文琦;面向應(yīng)用服務(wù)的云規(guī)模虛似機(jī)性能監(jiān)控與負(fù)載分析技術(shù)研究[D];復(fù)旦大學(xué);2013年
8 施繼成;面向多核處理器的虛擬機(jī)性能優(yōu)化[D];復(fù)旦大學(xué);2014年
9 游井輝;基于虛擬機(jī)動(dòng)態(tài)遷移的資源調(diào)度策略研究[D];華南理工大學(xué);2015年
10 方良英;云平臺(tái)的資源優(yōu)化管理研究與實(shí)現(xiàn)[D];南京師范大學(xué);2015年
,本文編號(hào):2426088
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2426088.html