三維視頻主客觀質(zhì)量評(píng)價(jià)方法與感知優(yōu)化編碼研究
[Abstract]:At present, the effect of online viewing 3D video is not satisfactory for ordinary home users, not only the picture is blurred, but also the 3D stereoscopic sense is poor. This is due to the huge amount of 3D video data, the excessive compression of 3D video 3D sense and depth of experience has a great impact. On the other hand, how to evaluate the quality of 3D video is a problem that has not been solved well. The distortion type of 3D video is different from that of traditional 2D video, and the evaluation method of video quality is not good. The user quality experience of 3D video also includes more complicated factors such as depth quality of 3D video. As a kind of 3D video aided information, depth map is being used more and more widely. For 3D video system based on depth map, the quality of video image from virtual viewpoint will affect the quality of user experience of the whole system. In chapter 2, the subjective and objective quality evaluation of virtual view video with texture / depth compression distortion is studied. The design principle of the subjective data set is to ensure that the quality coverage of the virtual rendering video for testing is wide enough and that there is a certain degree of quality distinction between each other. Therefore, each texture / depth video compression quantization parameter combination is carefully selected from a large number of candidates. The virtual rendering view video subjective quality evaluation data set has been used by many famous research institutions at home and abroad. In addition, an objective quality evaluation algorithm for virtual video rendering based on full reference is proposed. The algorithm focuses on the time domain scintillation distortion caused by depth map compression and view rendering itself. The experimental results show that the proposed algorithm is superior to the existing objective video quality evaluation algorithm on the complete data set, and the superiority of the proposed algorithm is more obvious than other algorithms on the subset with obvious time-domain scintillation distortion. In the third chapter, the depth perception quality evaluation of 3D video is studied, and how image distortion affects depth perception quality of 3D video is deeply explored through subjective experiments. The experimental data set includes symmetric distortion. It also includes asymmetric distortion. The results of subjective experiments show that the loss of image details will affect depth perception. The depth perception quality scores and image quality scores obtained from subjective experiments have been published publicly. At the same time, an objective evaluation algorithm is proposed to measure the depth-sensing degradation caused by image distortion. Experimental results show that the proposed algorithm can accurately predict the decline of depth perception quality. In chapter 4, a depth video perceptual optimization coding algorithm is proposed. Firstly, a low complexity video quality evaluation method is used to calculate the spatial and temporal distortion of virtual rendering view video. In this algorithm, the virtual rendering viewpoint distortion obtained by the low complexity video quality evaluation algorithm is used as the distortion criterion in the process of the rate distortion optimization of the depth video coding, and the Lagrangian multiplier in the objective function is rededuced. Experimental results show that the proposed depth video perceptual optimization coding algorithm can significantly reduce the time domain flicker distortion of virtual view video. The prediction accuracy of the proposed low complexity video evaluation algorithm for the subjective quality of virtual view video is higher than that of the existing mainstream video image quality evaluation algorithms. Basically can seamlessly integrate into the existing three-dimensional video encoder.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王恩達(dá);裴以建;和燕;;三維視頻中實(shí)現(xiàn)多個(gè)視頻同時(shí)播放[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2011年08期
2 張申;王維東;趙亞飛;吳祖成;王曰海;張明;;基于三維離散余弦變換的體三維視頻數(shù)據(jù)壓縮[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2012年01期
3 ;新書(shū)推介:《二維和三維視頻處理及立體顯示技術(shù)》[J];電視技術(shù);2010年05期
4 付麗秋;;三維視頻技術(shù)在仿真實(shí)驗(yàn)中的應(yīng)用[J];實(shí)驗(yàn)技術(shù)與管理;2013年12期
5 ;《二維和三維視頻處理及立體顯示技術(shù)》[J];電視技術(shù);2010年S1期
6 李勇;盧世江;宋芳;王輝;金洪震;;真實(shí)場(chǎng)景的三維視頻采集及顯示[J];光子學(xué)報(bào);2011年11期
7 ;國(guó)外動(dòng)態(tài)[J];廣播與電視技術(shù);1999年01期
8 ;關(guān)于第二代AVS標(biāo)準(zhǔn)[J];電視技術(shù);2009年S1期
9 姜波;;用RPC為三維視頻廣告增光添彩[J];電視字幕(特技與動(dòng)畫(huà));2007年07期
10 王建文;物體外型的三維視頻測(cè)量系統(tǒng)[J];西北輕工業(yè)學(xué)院學(xué)報(bào);1996年02期
相關(guān)會(huì)議論文 前2條
1 李勇;盧世江;宋芳;王輝;金洪震;;真實(shí)場(chǎng)景的三維視頻采集及顯示[A];中國(guó)光學(xué)學(xué)會(huì)2011年學(xué)術(shù)大會(huì)摘要集[C];2011年
2 張守祥;魏書(shū)田;張巖;;基于可重構(gòu)并行設(shè)計(jì)的三維視頻合成[A];2013年中國(guó)智能自動(dòng)化學(xué)術(shù)會(huì)議論文集(第五分冊(cè))[C];2013年
相關(guān)博士學(xué)位論文 前4條
1 姚超;三維視頻的視點(diǎn)繪制與編碼[D];北京交通大學(xué);2016年
2 劉祥凱;三維視頻主客觀質(zhì)量評(píng)價(jià)方法與感知優(yōu)化編碼研究[D];西南交通大學(xué);2016年
3 趙寅;三維視頻視覺(jué)質(zhì)量及增強(qiáng)處理研究[D];浙江大學(xué);2013年
4 周洋;面向三維視頻傳輸?shù)牟铄e(cuò)控制技術(shù)研究[D];寧波大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 王清;自由視點(diǎn)三維視頻系統(tǒng)關(guān)鍵技術(shù)研究[D];浙江大學(xué);2016年
2 張申;體三維視頻數(shù)據(jù)壓縮技術(shù)研究[D];浙江大學(xué);2010年
3 陳銘;基于運(yùn)動(dòng)信息的二維到三維視頻轉(zhuǎn)換技術(shù)研究[D];哈爾濱商業(yè)大學(xué);2011年
4 程清棟;三維視頻編碼傳輸中的錯(cuò)誤隱藏[D];寧波大學(xué);2012年
5 孫越;面向網(wǎng)絡(luò)傳輸?shù)娜S視頻錯(cuò)誤隱藏[D];寧波大學(xué);2013年
6 劉愛(ài)玲;三維視頻傳輸中的錯(cuò)誤隱藏方法研究[D];寧波大學(xué);2014年
7 王昕;三維視頻濾波及預(yù)測(cè)編碼技術(shù)研究[D];電子科技大學(xué);2015年
8 潘云峰;結(jié)合視覺(jué)顯著性的三維視頻增強(qiáng)和視頻重定位技術(shù)研究[D];寧波大學(xué);2015年
9 孫陽(yáng);二維視頻轉(zhuǎn)換為三維視頻的關(guān)鍵技術(shù)研究[D];上海交通大學(xué);2008年
10 李子會(huì);三維視頻多視點(diǎn)編碼技術(shù)研究[D];河北經(jīng)貿(mào)大學(xué);2012年
,本文編號(hào):2419291
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2419291.html