基于稀疏表示的視覺目標跟蹤方法研究
[Abstract]:The target tracking problem in the video sequence is a hot topic in the field of computer vision. It combines the research results in the fields of machine learning and pattern recognition, and has been widely used in video surveillance, intelligent traffic and modern military. Aiming at the problem of target tracking, researchers at home and abroad have carried out a lot of research and put forward many effective tracking algorithms, but how to track the target of apparent change in the complex and changeable natural scene is still a challenging problem. The common tracking difficulties include the change of the scene light flow, the change of the target scale, the local occlusion, the non-rigid deformation of the target, and the change of the position. these difficulties lead to an apparent non-linear change in the target's appearance in the video, making the tracking problem more complex. The aim of this paper is to improve the accuracy and robustness of the target tracking algorithm. The main contributions of this paper are as follows: (1) A two-step target tracking algorithm based on the overall sparse representation of particle pre-judgment is presented. Aiming at the problem that most relevant algorithms need to observe and model all sampling particles, the algorithm uses the sparse representation of the whole template in the first step to model the particle pre-judgment problem, and the particles which deviate from the real state of the target are pre-determined by the particles, the number of samples can be effectively reduced, and the algorithm efficiency is improved. in order to reduce the possibility of drift in the tracking, the algorithm improves the accuracy of the tracking result by taking the initial state and the current state of the target as the observation reference in the second step. The experimental results of a plurality of test videos show the effectiveness of the algorithm. (2) A target tracking algorithm based on partial discrimination and sparse representation is proposed. aiming at the problem that the existing correlation algorithm is insufficient to distinguish the target and the background, the local background image is added as a negative sample to train the dictionary, the expression capability and the judgment capability of the dictionary are taken into account, the problem that the existing local sparse model lacks the target global information is solved, The target is modeled as a sparse coding histogram of a given local image in a dictionary space, which form a sparse dictionary and have a certain structure, so that the target model can effectively combine the local features and the global structural features of the target. In order to improve the accuracy of the observation model, a similarity coefficient based on the target structure information is designed to measure the similarity between the target and the sample, and the target model is actively updated to meet the apparent change in the tracking. The experimental results show that the algorithm can deal with most of the tracking difficulties and has higher tracking precision. (3) A target tracking algorithm based on the sparse representation of the weighted structure is proposed. The method adopts the structure sparse representation to model the target, can fully utilize the structure information between the target local images, effectively avoids the degradation of the model, and simultaneously adds the background information in the structure sparse dictionary, so that the discrimination capability of the model on the background can be enhanced; in addition, the importance weight is distributed according to the action of the local image when the target is expressed, and the target is modeled as a weighted structure sparse model, so that the robustness of the model is greatly improved; and in order to reduce the influence of the local occlusion on the tracking, the occlusion detection module is added when the observation model is designed. The experimental results show that the weighted-structure sparse model has good adaptability to the apparent change of the target, and the algorithm shows good robustness and accuracy in the tracking. (4) A multi-task tracking algorithm based on local joint sparse representation is proposed. Aiming at the problem that the correlation algorithm has insufficient use of the sample structure information, the sparse coding of the local image in the sample is regarded as an independent task, and the partial images of all the samples are combined and sparse coded under the multi-task learning framework. The combined sparse coding can maximize the structural relationship between the samples and the samples, and improve the working efficiency of the algorithm while increasing the expression ability of the model. In addition, a joint similarity measure function is designed to measure the similarity between the target and the sample from both the whole and the local aspects, and the reliability of the observation model is improved. The experiment shows that the algorithm has more accurate tracking results on the test video. In this paper, the target tracking of the video sequence is realized by the sparse representation of the whole, the sparse representation of the local discrimination, the sparse representation of the weighted structure and the local joint sparse representation, and the four tracking algorithms are analyzed. The experimental results show that this paper improves the accuracy and robustness of the target tracking algorithm.
【學位授予單位】:大連理工大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TP391.41
【相似文獻】
相關期刊論文 前10條
1 李映;張艷寧;許星;;基于信號稀疏表示的形態(tài)成分分析:進展和展望[J];電子學報;2009年01期
2 趙瑞珍;王飛;羅阿理;張彥霞;;基于稀疏表示的譜線自動提取方法[J];光譜學與光譜分析;2009年07期
3 楊蜀秦;寧紀鋒;何東健;;基于稀疏表示的大米品種識別[J];農(nóng)業(yè)工程學報;2011年03期
4 史加榮;楊威;魏宗田;;基于非負稀疏表示的人臉識別[J];計算機工程與設計;2012年05期
5 高志榮;熊承義;笪邦友;;改進的基于殘差加權(quán)的稀疏表示人臉識別[J];中南民族大學學報(自然科學版);2012年03期
6 朱杰;楊萬扣;唐振民;;基于字典學習的核稀疏表示人臉識別方法[J];模式識別與人工智能;2012年05期
7 耿耀君;張軍英;袁細國;;一種基于稀疏表示系數(shù)的特征相關性測度[J];模式識別與人工智能;2013年01期
8 張疆勤;廖海斌;李原;;基于因子分析與稀疏表示的多姿態(tài)人臉識別[J];計算機工程與應用;2013年05期
9 李正周;王會改;劉梅;丁浩;金鋼;;基于形態(tài)成分稀疏表示的紅外小弱目標檢測[J];彈箭與制導學報;2013年04期
10 胡正平;趙淑歡;李靜;;基于塊稀疏遞推殘差分析的稀疏表示遮擋魯棒識別算法研究[J];模式識別與人工智能;2014年01期
相關會議論文 前3條
1 何愛香;劉玉春;魏廣芬;;基于稀疏表示的煤矸界面識別研究[A];虛擬運營與云計算——第十八屆全國青年通信學術年會論文集(上冊)[C];2013年
2 樊亞翔;孫浩;周石琳;鄒煥新;;基于元樣本稀疏表示的多視角目標識別[A];2013年中國智能自動化學術會議論文集(第五分冊)[C];2013年
3 葛鳳翔;任歲玲;郭鑫;郭良浩;孫波;;微弱信號處理及其研究進展[A];中國聲學學會水聲學分會2013年全國水聲學學術會議論文集[C];2013年
相關博士學位論文 前10條
1 李進明;基于稀疏表示的圖像超分辨率重建方法研究[D];重慶大學;2015年
2 王亞寧;基于信號稀疏表示的電機故障診斷研究[D];河北工業(yè)大學;2014年
3 姚明海;視頻異常事件檢測與認證方法研究[D];東北師范大學;2015年
4 黃國華;蛋白質(zhì)翻譯后修飾位點與藥物適應癥預測方法研究[D];上海大學;2015年
5 王瑾;基于稀疏表示的數(shù)據(jù)收集、復原與壓縮研究[D];北京工業(yè)大學;2015年
6 王文卿;基于融合框架與稀疏表示的遙感影像銳化[D];西安電子科技大學;2015年
7 解虎;高維小樣本陣列自適應信號處理方法研究[D];西安電子科技大學;2015年
8 秦振濤;基于稀疏表示及字典學習遙感圖像處理關鍵技術研究[D];成都理工大學;2015年
9 薛明;基于稀疏表示的在線目標跟蹤研究[D];上海交通大學;2014年
10 孫樂;空譜聯(lián)合先驗的高光譜圖像解混與分類方法[D];南京理工大學;2014年
相關碩士學位論文 前10條
1 王道文;基于稀疏表示的目標跟蹤算法研究[D];華南理工大學;2015年
2 李哲;基于稀疏表示和LS-SVM的心電信號分類[D];河北大學;2015年
3 孫雪青;Shearlet變換和稀疏表示相結(jié)合的甲狀腺結(jié)節(jié)圖像融合[D];河北大學;2015年
4 吳麗璇;基于稀疏表示的微聚焦X射線圖像去噪方法[D];華南理工大學;2015年
5 趙孝磊;基于圖像分塊稀疏表示的人臉識別算法研究[D];南京信息工程大學;2015年
6 黃志明;基于辨別式稀疏字典學習的視覺追蹤算法研究[D];華南理工大學;2015年
7 張鈴華;非約束環(huán)境下的稀疏表示人臉識別算法研究[D];南京信息工程大學;2015年
8 賀妍斐;基于稀疏表示與自適應倒易晶胞的遙感圖像復原方法研究[D];南京信息工程大學;2015年
9 楊爍;電能質(zhì)量擾動信號的稀疏表示/壓縮采樣研究[D];西南交通大學;2015年
10 應艷麗;基于低秩稀疏表示的目標跟蹤算法研究[D];西南交通大學;2015年
,本文編號:2382451
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2382451.html