具有輸入輸出約束特性的非線性系統(tǒng)自適應(yīng)模糊控制
[Abstract]:From the angle of control engineering, the final control performance of the system is not only related to the controlled object but also the performance of various physical devices such as the actuator and the sensor in the control loop, as well as the effect of the communication channel performance. On the one hand, the controlled object is generally nonlinear and uncertain due to the influence of factors such as system modeling error and working environment. on the other hand, the actuators and sensors often have non-smooth, non-linear constraint characteristics. When the control signal and the output signal pass through these restriction links, the system performance degradation and even the system instability can be caused. In addition, the communication channel is limited by the network bandwidth, the control signal is quantified before transmission, and the resulting quantization error also has a great negative effect on the system control performance. In view of this, the adaptive control of nonlinear systems with input and output constraint characteristics is systematically studied by using the backstepping technique as a frame and using the fuzzy logic system as a function approximation. This article is divided into six chapters. The first chapter provides an overview of the research status of nonlinear systems with input and output constraints. From the second chapter, the main research contents are expanded from five parts, each part as a chapter. In the second chapter, a direct adaptive fuzzy output feedback control scheme is proposed for nonlinear systems with unmodeled dynamic and dynamic interference. In the design process, a linear state observer is introduced to estimate the state of the system. The fuzzy logic system (FLS) is used to approximate the unknown virtual control signal, and a self-adaptive fuzzy controller is designed in combination with the reverse-step recursion method. The input-state stability of closed-loop system is proved by means of small gain theorem. The control scheme has the advantages that the strong hypothesis condition of the dynamic interference term in the prior art is relaxed, the norm of the weight vector of the fuzzy logic system is estimated on-line, the number of the self-adaptive parameters of the on-line adjustment is reduced, and the on-line running efficiency of the adaptive control algorithm is accelerated. In the third chapter, the uncertainty and the perturbation characteristic of the dead zone of the actuator in the complex working environment are fully considered, and a fuzzy dead zone model is proposed to study the tracking control problem of the nonlinear system with uncertain dead zone input. Combined with the theory of fuzzy set and the idea of integrated control, a self-adaptive comprehensive control scheme is proposed for the strict feedback nonlinear system with non-measurable state and fuzzy dead zone input. The scheme guarantees the stability and tracking performance of the closed-loop system. Then, the tracking control problem of the unmodeled dynamic nonlinear system with fuzzy dead zone input is studied, and the new adaptive controller is designed by using the auxiliary dynamic signal to control the unmodeled dynamics, combining the integrated control idea and the dynamic surface (DSC) technology. In the fourth chapter, the change of the hysteresis of the actuator in the actual control system is easy to jump, and the Bouc-wen hysteresis model of the variable direction is put forward. Based on the hysteresis model, the self-adaptive tracking control problem of a stochastic pure-feedback nonlinear system with hysteresis input is studied. On the basis of lemma, a novel adaptive fuzzy control scheme is proposed by introducing an auxiliary virtual controller and using the properties of the Nusculum function. In the random nonlinear system, a novel adaptive fuzzy control design scheme is proposed. Compared with the existing research work of the hysteresis input problem, the system considered in this chapter is more general, thus extending the application range of the hysteresis input problem. The fifth chapter is to cancel the negative influence of the non-linear link in the output transmission device on the system performance, and to study the tracking control problem of the strict feedback nonlinear system with unknown output dead zone. On the one hand, the existing output non-linear research work is focused on the stabilization problem of a linear system or a non-linear system satisfying the matching condition, and the method is difficult to control the tracking control problem of a complex nonlinear system (such as a strict feedback nonlinear system). On the other hand, the state variables in the actual system are often difficult to obtain, which results in a backstepping design that has previously included some or all of the state variables and cannot be used directly to control such systems. In this paper, a new controller design method is proposed to solve the tracking control problem of this kind of complex system by establishing the relation between the non-linear function and the output of the state, introducing a Nusculum function and an auxiliary virtual controller. The sixth chapter, taking into account the wide application of the quantitative feedback control in the fields of digital control and networked control system, has studied the performance control problem of the stochastic nonlinear system with input quantization constraint. First, a new non-linear decomposition strategy for the output of a quantizer is proposed by using the sector-specific property of the hysteresis class quantizer, which overcomes the problem that the boundary of the perturbation term in the prior linear decomposition strategy is not well defined. Then, using this non-linear decomposition strategy, a new adaptive fuzzy control scheme is proposed to solve the problem of tracking control with input quantization and random strict feedback nonlinear system. The scheme can compensate the quantization error through the on-line learning mechanism, and does not need the system and the quantizer parameter to meet the strong hypothesis condition, so that the tracking performance of the system can be ensured under the limited communication frequency. Then, the negative influence of the unmodeled dynamics on the quantitative feedback nonlinear system is fully considered, and the stabilization problem of the unmodeled dynamic random nonlinear system with the quantized input constraint is studied. In this paper, a new self-adaptive fuzzy control scheme is proposed in combination with the reverse-step recursive technique and the small-gain method, which ensures that the closed-loop system is stable according to the probability input-state.
【學(xué)位授予單位】:廣東工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TP273.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 魏瑞軒,韓崇昭,左東廣;非線性系統(tǒng)廣義脈沖響應(yīng)函數(shù)的盲辨識(shí)[J];控制與決策;2002年03期
2 曾成,趙保軍,何佩琨;輸出不可量測(cè)非線性系統(tǒng)的神經(jīng)模型參考自適應(yīng)控制[J];電子與信息學(xué)報(bào);2003年05期
3 劉嵐,胡釙,韓進(jìn)能;非線性系統(tǒng)構(gòu)成哈默斯坦模型的必要條件[J];武漢大學(xué)學(xué)報(bào)(工學(xué)版);2004年01期
4 吳忠強(qiáng);非線性系統(tǒng)的兩種H_∞控制方案[J];系統(tǒng)工程與電子技術(shù);2004年04期
5 保宏,段寶巖,陳光達(dá);基于小波的非線性系統(tǒng)在線狀態(tài)估計(jì)[J];西安電子科技大學(xué)學(xué)報(bào);2004年05期
6 錢慧芳,陳增祿;非線性系統(tǒng)的線性控制方法研究[J];安徽大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年03期
7 程鋒章;于希寧;;非線性系統(tǒng)的模糊建模及仿真[J];儀器儀表用戶;2005年06期
8 隋巖峰;于達(dá)仁;趙軍;;非線性系統(tǒng)多流形展開模型[J];系統(tǒng)仿真學(xué)報(bào);2008年08期
9 林瓊斌;楊富文;王武;;具有多包數(shù)據(jù)丟失非線性系統(tǒng)的耗散模糊濾波[J];控制理論與應(yīng)用;2010年03期
10 F.R.Groves ,JR. ,楊火榮;比較定理在非線性系統(tǒng)開關(guān)控制計(jì)算中的應(yīng)用[J];國(guó)外自動(dòng)化;1983年01期
相關(guān)會(huì)議論文 前10條
1 賈理群;;非線性系統(tǒng)評(píng)價(jià)的若干方法研究[A];全國(guó)青年管理科學(xué)與系統(tǒng)科學(xué)論文集(第1卷)[C];1991年
2 吳方向;戴冠中;;奇異非線性系統(tǒng)的線性化問(wèn)題[A];1996年中國(guó)控制會(huì)議論文集[C];1996年
3 楚天廣;黃琳;;一類飽和非線性系統(tǒng)的全局漸近穩(wěn)定性[A];1997年中國(guó)控制會(huì)議論文集[C];1997年
4 陳彭年;秦化淑;;非線性系統(tǒng)平穩(wěn)分歧解的控制[A];第二十屆中國(guó)控制會(huì)議論文集(上)[C];2001年
5 徐維鼎;;一類非線性系統(tǒng)的線性化[A];1993中國(guó)控制與決策學(xué)術(shù)年會(huì)論文集[C];1993年
6 趙軍;張嗣瀛;;關(guān)于非線性系統(tǒng)的反饋對(duì)稱化:反饋可以是奇異的情形[A];第三屆全國(guó)控制與決策系統(tǒng)學(xué)術(shù)會(huì)議論文集[C];1991年
7 李春文;苗原;胡世文;;用構(gòu)造定號(hào)導(dǎo)函數(shù)V(x)來(lái)判定一類多項(xiàng)式非線性系統(tǒng)的穩(wěn)定與不穩(wěn)定性[A];1995年中國(guó)控制會(huì)議論文集(上)[C];1995年
8 陳彭年;韓正之;張鐘俊;;互聯(lián)非線性系統(tǒng)的漸近鎮(zhèn)定[A];1994中國(guó)控制與決策學(xué)術(shù)年會(huì)論文集[C];1994年
9 金輝宇;康宇;殷保群;;用階梯信號(hào)同步非線性系統(tǒng)[A];第二十七屆中國(guó)控制會(huì)議論文集[C];2008年
10 陳淑萍;張偉;錢有華;;一類非線性系統(tǒng)的最簡(jiǎn)規(guī)范形[A];第十二屆全國(guó)非線性振動(dòng)暨第九屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議論文集[C];2009年
相關(guān)重要報(bào)紙文章 前1條
1 俞杰邋吳勝 董斌;莫要泛化“非線性”[N];中國(guó)國(guó)防報(bào);2007年
相關(guān)博士學(xué)位論文 前10條
1 童長(zhǎng)飛;基于半定規(guī)劃的多項(xiàng)式非線性系統(tǒng)鎮(zhèn)定控制研究[D];浙江大學(xué);2008年
2 陳晶;一類非線性系統(tǒng)的參數(shù)辨識(shí)方法研究[D];江南大學(xué);2013年
3 沈自飛;一類非線性系統(tǒng)的臨界性及穩(wěn)定性研究[D];北京信息控制研究所;2007年
4 韓東方;基于單位分解方法的幾類非線性系統(tǒng)的控制[D];汕頭大學(xué);2008年
5 王芳;具有輸入輸出約束特性的非線性系統(tǒng)自適應(yīng)模糊控制[D];廣東工業(yè)大學(xué);2015年
6 傅勤;大型互聯(lián)非線性系統(tǒng)的魯棒分散控制[D];南京理工大學(xué);2009年
7 趙敏;約束非線性系統(tǒng)預(yù)測(cè)控制算法設(shè)計(jì)及穩(wěn)定性分析[D];上海交通大學(xué);2009年
8 劉勇華;純反饋非線性系統(tǒng)控制研究[D];華南理工大學(xué);2014年
9 王薇;非線性系統(tǒng)的滑模控制研究[D];中國(guó)海洋大學(xué);2005年
10 孫剛;不確定下三角非線性系統(tǒng)自適應(yīng)控制[D];大連海事大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 仲兆準(zhǔn);非線性系統(tǒng)的魯棒無(wú)源化控制[D];南京理工大學(xué);2005年
2 劉艷軍;非線性系統(tǒng)的無(wú)源化控制[D];沈陽(yáng)工業(yè)大學(xué);2004年
3 魯瑤;非線性系統(tǒng)的自適應(yīng)動(dòng)態(tài)面控制研究[D];揚(yáng)州大學(xué);2011年
4 魏蕊;基于擾動(dòng)補(bǔ)償?shù)姆蔷性系統(tǒng)最優(yōu)控制方法及其應(yīng)用研究[D];青島科技大學(xué);2012年
5 王雪梅;一類非線性系統(tǒng)的鎮(zhèn)定研究[D];華中科技大學(xué);2008年
6 劉元慧;一類線性和非線性系統(tǒng)可控的充分條件[D];吉林大學(xué);2006年
7 楊永勝;非線性系統(tǒng)同步化、控制及電子電路仿真設(shè)計(jì)[D];大連理工大學(xué);2006年
8 侯鵬;仿射型非線性系統(tǒng)智能故障診斷與容錯(cuò)控制研究[D];遼寧科技大學(xué);2012年
9 姜禮敏;非線性系統(tǒng)的輸出反饋[D];河南師范大學(xué);2011年
10 李云艷;幾類非線性系統(tǒng)的穩(wěn)定與控制研究[D];中國(guó)海洋大學(xué);2009年
,本文編號(hào):2376728
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2376728.html