基于視覺感知的超分辨率圖像重建及其質(zhì)量評價
[Abstract]:In practical applications, high-resolution images are often difficult to obtain due to the limitations of the hardware devices within the imaging system. It is not only expensive to improve the resolution of the image by improving the hardware equipment but also some technical problems which are difficult to be overcome in the short time of the imaging system. The super-resolution image reconstruction technique is to reconstruct a high-resolution image with better quality from one or more low-resolution images by using signal processing technology. In this paper, the reconstruction of single-frame low-resolution image and its quality evaluation are mainly studied. On the basis of the improvement of the existing method, the high-resolution image and the image quality evaluation standard which are consistent with the human's subjective preference are obtained. The human vision system is a highly complex intelligent information processing system, which can complete the processing of the image content in a very short time. Therefore, the visual perception characteristic of the human vision system is combined with the computer image processing algorithm, and the processing efficiency of the latter can be effectively improved. in that early stage of visual information perception, the human vision system is not proces equally to all the image regions, but rather the region of interest is selected by the visual attention mechanism. The image saliency detection algorithm based on visual attention can effectively reduce the image content to be processed, thereby improving the image processing efficiency. due to the limited resolution capability of the vision system, the human eye cannot detect the change of the signal content below a certain threshold. We can use this feature to remove the change information that has no effect on the human vision system, and improve the consistency of the objective image quality evaluation index and the subjective evaluation. This paper studies the reconstruction of super-resolution image based on visual perception and its quality evaluation method. The main content and contribution include: 1. The traditional interpolation algorithm is easy to cause the edge blur, and the human vision system is usually easy to notice the edge of the object in the image. The traditional interpolation algorithm can not process the noise well, and due to the visual masking effect, the noise of the flat region is more likely to cause the attention of the people. In view of the above problems, a super-resolution reconstruction method based on edge focusing and adaptive filtering is proposed. The method comprises the following steps of: firstly, obtaining an initial high-resolution image by adopting a traditional interpolation method, and finding the edge pixels in the image through the edge focus, adopting an adaptive filtering method for different pixels, and automatically adjusting the filter parameters to obtain the best filtering effect; a final high resolution reconstruction image is obtained. At the same time, we propose a fast image block search algorithm to speed up the filtering method. the experimental results show that the visual attention mechanism of the human vision system determines that the image content of the region of interest is always preferentially processed when a pair of images is observed. In the case of limited computing resources and high real-time performance, the priority of the region of interest can be improved, and the speed of the super-resolution image reconstruction algorithm can be accelerated under the condition of ensuring the reconstruction quality of the region of interest. Therefore, we propose a super-resolution image reconstruction framework based on the saliency model, which has better adaptability and expandability. In addition, the traditional interpolation method directly processes the pixels in the low-resolution image as the pixel of the corresponding position in the high-resolution image, and does not take into account the influence of a series of quality-reducing factors such as fuzzy, down-sampling and noise interference in the actual imaging process. in ord to solve that problem, we also propose a block interpolation method based on the similarity of the local structure of the image. The full-reference image quality evaluation standard which is widely used at present is not applicable to the quality evaluation of super-resolution reconstruction images, and scholars have little research on the quality evaluation of super-resolution reconstruction images. In view of the above problems, a new semi-reference super-resolution image quality evaluation criterion is proposed. On the one hand, the consistency between the reconstructed image and the reference low resolution image is reflected from the degree of similarity of the structure; on the other hand, the objective evaluation of the quality of the reconstructed image by the human vision system is reflected from the degree of saliency and the degree of blurring of the edge, and the final evaluation index is obtained by fusing the two. The experiment shows that the image quality evaluation standard can be well applied to the quality evaluation task of the super-resolution reconstruction image. The research results, from the characteristics of human visual perception, complement and improve the existing super-resolution image reconstruction and quality evaluation method, have a certain forward-looking and challenging, have certain theoretical and practical value.
【學(xué)位授予單位】:江西財經(jīng)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;超分辨率圖像重建的應(yīng)用[J];咸陽師范學(xué)院學(xué)報;2006年02期
2 袁小華;歐陽曉麗;夏德深;;超分辨率圖像恢復(fù)研究綜述[J];地理與地理信息科學(xué);2006年03期
3 袁小華;高秀梅;夏其英;夏德深;;改進的有參超分辨率圖像盲恢復(fù)[J];南京理工大學(xué)學(xué)報(自然科學(xué)版);2006年03期
4 徐忠強;朱秀昌;;超分辨率圖像重建方法研究[J];自動化儀表;2006年11期
5 周衛(wèi)峰;李成軍;朱重光;;基于總變分的超分辨率圖像重建[J];計算機工程與應(yīng)用;2007年36期
6 趙云龍;徐帥;李光;;基于廣義遞歸反演的超分辨率圖像恢復(fù)研究[J];通信技術(shù);2008年11期
7 劉潤丹;潘新生;;一種實時魯棒的超分辨率圖像重建方法[J];計算機工程與應(yīng)用;2012年09期
8 蘇衡;周杰;張志浩;;超分辨率圖像重建方法綜述[J];自動化學(xué)報;2013年08期
9 孫志民,汪源源,王威琪;超分辨率圖像重建方法及其在超聲圖像中的應(yīng)用[J];儀器儀表學(xué)報;2004年S2期
10 禹晶;蘇開娜;肖創(chuàng)柏;;一種改善超分辨率圖像重建中邊緣質(zhì)量的方法[J];自動化學(xué)報;2007年06期
相關(guān)會議論文 前7條
1 趙榮椿;;超分辨率圖像重建及其應(yīng)用[A];全國第二屆嵌入式技術(shù)聯(lián)合學(xué)術(shù)會議論文集[C];2007年
2 孫志民;汪源源;王威琪;;超分辨率圖像重建方法及其在超聲圖像中的應(yīng)用[A];中國儀器儀表學(xué)會第六屆青年學(xué)術(shù)會議論文集[C];2004年
3 鄒瑩;周詮;袁琪;李映;趙榮椿;;基于正則化的超分辨率圖像重建方法及其實現(xiàn)[A];第三屆全國嵌入式技術(shù)和信息處理聯(lián)合學(xué)術(shù)會議論文集[C];2009年
4 禹晶;段娟;肖創(chuàng)柏;;一種基于MAP的超分辨率圖像重建的快速算法[A];第十四屆全國圖象圖形學(xué)學(xué)術(shù)會議論文集[C];2008年
5 石偉玉;張旭東;任溯;;基于分層運動估計的POCS超分辨率圖像重建[A];2009全國虛擬儀器大會論文集(二)[C];2009年
6 李旭健;房勝;梁永全;;基于混疊圖像的超分辨率圖像重構(gòu)算法研究[A];第二屆和諧人機環(huán)境聯(lián)合學(xué)術(shù)會議(HHME2006)——第15屆中國多媒體學(xué)術(shù)會議(NCMT'06)論文集[C];2006年
7 唐智飛;禹晶;肖創(chuàng)柏;;基于雙邊濾波的POCS超分辨率圖像序列重建算法[A];第十五屆全國圖象圖形學(xué)學(xué)術(shù)會議論文集[C];2010年
相關(guān)博士學(xué)位論文 前2條
1 舒雷;基于視覺感知的超分辨率圖像重建及其質(zhì)量評價[D];江西財經(jīng)大學(xué);2016年
2 袁小華;超分辨率圖像恢復(fù)中的方法研究[D];南京理工大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 田之英;基于多成分字典的稀疏表示超分辨率圖像重建[D];沈陽航空航天大學(xué);2016年
2 李欣;高清晰度超分辨率圖像生成系統(tǒng)設(shè)計與實現(xiàn)[D];山西大學(xué);2016年
3 陳致豪;基于稀疏表示與壓縮傳感的超分辨率圖像處理技術(shù)研究[D];西南交通大學(xué);2013年
4 程光權(quán);基于小波的超分辨率圖像重建[D];國防科學(xué)技術(shù)大學(xué);2005年
5 陳光盛;空域超分辨率圖像融合算法研究[D];湖南大學(xué);2006年
6 劉曉暉;用于遠(yuǎn)距離人臉識別的超分辨率圖像恢復(fù)研究[D];天津大學(xué);2009年
7 徐鵬宇;超分辨率圖像重建研究[D];上海交通大學(xué);2009年
8 荊博;超分辨率圖像重建的研究[D];北京工業(yè)大學(xué);2013年
9 張蓓蓓;超分辨率圖像的重建[D];西安理工大學(xué);2010年
10 朱勇;超分辨率圖像處理技術(shù)的研究[D];華中科技大學(xué);2007年
,本文編號:2371281
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2371281.html