天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 信息類博士論文 >

雙平面支持向量機(jī)的模型與算法研究

發(fā)布時間:2018-11-11 20:07
【摘要】:雙平面支持向量機(jī)(Twin Support Vector Machines, TSVM)是一種非平行平面最接近支持向量機(jī)算法。它的目標(biāo)是尋找兩個非平行的超平面,一個超平面離一類樣本點很近,離另一類樣本點有一定的距離。它求解一對相對小規(guī)模的二次優(yōu)化問題,工作速度比支持向量機(jī)(Support Vector Machines, SVM)快約四倍,它的性能也常常比SVM好。TSVM在最近幾年的發(fā)展非常迅速,成功地應(yīng)用在模式識別、數(shù)據(jù)分類和函數(shù)擬合等領(lǐng)域。SVM的多任務(wù)學(xué)習(xí),多視角學(xué)習(xí)和半監(jiān)督學(xué)習(xí)已經(jīng)吸引了大量的研究人員進(jìn)行研究。本文將TSVM擴(kuò)展到了多任務(wù)學(xué)習(xí),多視角監(jiān)督學(xué)習(xí)、多視角半監(jiān)督學(xué)習(xí)和半監(jiān)督學(xué)習(xí)的框架下,并且用PAC貝葉斯理論分析了雙平面支持向量機(jī)的泛化誤差界。在多任務(wù)學(xué)習(xí)框架中,我們首先提出了直接多任務(wù)雙平面支持向量機(jī)(Direct Multitask Twin Support Vector Machines, DMTSVM),這種方法類似于多任務(wù)支持向量機(jī)思想,任務(wù)間分類器共享一個共同的表示,每個任務(wù)會有一個偏置。同時為了消除雙平面支持向量機(jī)對于野值點敏感性的缺陷,我們提出了通過加權(quán)類中心到超平面距離的質(zhì)心雙平面支持向量機(jī)(Centroid Twin Support Vector Machines, CTSVM),然后將CTSVM按照相同的方式擴(kuò)展到多任務(wù)學(xué)習(xí)框架下得到了我們的多任務(wù)質(zhì)心雙平面支持向量機(jī)(Multitask Centroid Twin Support Vector Machines, MCTSVM)。在多視角學(xué)習(xí)框架中,我們提出了多視角雙平面支持向量機(jī)(Multi-view Twin Support Vector Machines, MvTSVM)對應(yīng)于多視角監(jiān)督學(xué)習(xí),以及多視角拉普拉斯雙平面支持向量機(jī)(Multi-view Laplacian Twin Support Vector Machines, MvLapTSVM)對應(yīng)于多視角半監(jiān)督學(xué)習(xí)。這兩種方法都通過多視角約束的思想結(jié)合了兩個視角,類似于SVM-2K。MvLapTSVM在MvTSVM的基礎(chǔ)上,借鑒拉普拉斯雙平面支持向量機(jī)(Laplacian Twin Support Vector Machines, LapTSVM)額外增加了平方損失和Laplacian規(guī)范化項。在半監(jiān)督學(xué)習(xí)框架中,我們使用了新規(guī)范化項,叫做切空間內(nèi)蘊(yùn)流形規(guī)范化(Tangent Space Intrinsic Manifold Regularization, TSIMR)。該規(guī)范化項不僅能夠利用標(biāo)簽數(shù)據(jù)和未標(biāo)簽數(shù)據(jù)來捕獲流形的局部信息,而且還包括了經(jīng)典的Laplacian規(guī)范化項,我們將它和TSVM結(jié)合進(jìn)行半監(jiān)督學(xué)習(xí),提出了切空間內(nèi)蘊(yùn)流形規(guī)范化雙平面支持向量機(jī)(Tangent Space Intrinsic Manifold Regularization Twin Support Vector Machines, TiTSVM)。SVM被廣泛應(yīng)用的一個重要原因在于它有強(qiáng)大的統(tǒng)計學(xué)習(xí)理論做支撐,而雙平面支持向量機(jī)的理論分析極少。PAC貝葉斯界和先驗PAC貝葉斯界基于分類器分布的先驗和后驗是實際應(yīng)用中最新最緊的界。本文最后使用統(tǒng)計學(xué)習(xí)理論中的PAC貝葉斯理論分析了雙平面支持向量機(jī)的理論界。為了評價本文提出的方法,我們在多個現(xiàn)實數(shù)據(jù)集上進(jìn)行了對比實驗。實驗的結(jié)果驗證了本文提出算法的有效性。
[Abstract]:Dual plane support vector machine (Twin Support Vector Machines, TSVM) is the nearest support vector machine algorithm in non-parallel plane. Its aim is to find two nonparallel hyperplanes, one is very close to one kind of sample point, and there is a certain distance from the other kind of sample point. It can solve a pair of small scale quadratic optimization problems, which is about four times faster than support vector machine (Support Vector Machines, SVM), and its performance is often better than SVM. TSVM has developed rapidly in recent years, and has been successfully applied in pattern recognition. In the field of data classification and function fitting, SVM's multi-task learning, multi-perspective learning and semi-supervised learning have attracted a large number of researchers to do research. In this paper, TSVM is extended to the framework of multi-task learning, multi-view supervised learning, multi-view semi-supervised learning and semi-supervised learning, and the generalization error bound of biplane support vector machine is analyzed by using PAC Bayesian theory. In the framework of multitask learning, we first propose a direct multitask biplane support vector machine (Direct Multitask Twin Support Vector Machines, DMTSVM), which is similar to the idea of multitask support vector machine (SVM). Each task will have a bias. In order to eliminate the sensitivity of biplane support vector machines to outliers, we propose a biplane support vector machine (Centroid Twin Support Vector Machines, CTSVM),) based on the distance between the center of the class and the hyperplane. Then we extend CTSVM to the framework of multitask learning in the same way, and get our multi-task centroid two-plane support vector machine (Multitask Centroid Twin Support Vector Machines, MCTSVM). In the framework of multi-view learning, we propose a multi-view biplane support vector machine (Multi-view Twin Support Vector Machines, MvTSVM) corresponding to multi-view supervised learning, and a multi-view Laplacian double-plane support vector machine (Multi-view Laplacian Twin Support Vector Machines,). MvLapTSVM) corresponds to multi-perspective semi-supervised learning. These two methods combine two perspectives through the idea of multi-view constraint, which is similar to that of SVM-2K.MvLapTSVM on the basis of MvTSVM, and draw lessons from Laplacian double plane support vector machine (Laplacian Twin Support Vector Machines,). LapTSVM) adds additional square loss and Laplacian normalization items. In a semi-supervised learning framework, we use a new normalized term, called tangent space intrinsic manifold normalized (Tangent Space Intrinsic Manifold Regularization, TSIMR). The canonical term can not only capture the local information of manifold by using tag data and unlabeled data, but also include the classical Laplacian canonical item. We combine it with TSVM for semi-supervised learning. An important reason that (Tangent Space Intrinsic Manifold Regularization Twin Support Vector Machines, TiTSVM). SVM is widely used in tangent space is that it is supported by strong statistical learning theory. PAC Bayesian bound and prior PAC Bayesian bound based on classifier distribution are the newest and most compact bounds in practical applications. In the end, the PAC Bayesian theory of statistical learning theory is used to analyze the theory bound of biplane support vector machine. In order to evaluate the proposed method, we have carried out comparative experiments on several real data sets. The experimental results show the effectiveness of the proposed algorithm.
【學(xué)位授予單位】:華東師范大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TP18

【相似文獻(xiàn)】

相關(guān)期刊論文 前5條

1 鄭南寧,許東華,徐維樸;基于雙平面正交投影重建血管截面的新方法[J];中國圖象圖形學(xué)報;1999年02期

2 張春旺;姜濤;李大力;;關(guān)于構(gòu)建雙平面?zhèn)鬏敵休d網(wǎng)的探討[J];科技信息(科學(xué)教研);2007年30期

3 肖秀琴;魏_";;實現(xiàn)匯聚層和核心層的雙平面構(gòu)筑安全的傳輸網(wǎng)[J];電信技術(shù);2007年01期

4 許飛,欒慧先;雙平面構(gòu)建下一代傳輸網(wǎng)[J];通信管理與技術(shù);2005年03期

5 ;[J];;年期

相關(guān)會議論文 前10條

1 劉春軍;欒杰;穆大力;穆蘭花;辛敏強(qiáng);;腋窩入路內(nèi)窺鏡輔助雙平面隆乳500例[A];中華醫(yī)學(xué)會整形外科學(xué)分會第十一次全國會議、中國人民解放軍整形外科學(xué)專業(yè)委員會學(xué)術(shù)交流會、中國中西醫(yī)結(jié)合學(xué)會醫(yī)學(xué)美容專業(yè)委員會全國會議論文集[C];2011年

2 劉春軍;欒杰;穆大力;穆蘭花;辛敏強(qiáng);;腋窩入路內(nèi)窺鏡輔助雙平面隆乳500例[A];中華醫(yī)學(xué)會整形外科學(xué)分會第十一次全國會議、中國人民解放軍整形外科學(xué)專業(yè)委員會學(xué)術(shù)交流會、中國中西醫(yī)結(jié)合學(xué)會醫(yī)學(xué)美容專業(yè)委員會全國會議論文集[C];2011年

3 武劍輝;李傳波;;雙探頭雙平面實時顯示技術(shù)及其應(yīng)用[A];中國生物醫(yī)學(xué)工程進(jìn)展——2007中國生物醫(yī)學(xué)工程聯(lián)合學(xué)術(shù)年會論文集(上冊)[C];2007年

4 唐紅;黃承孝;黃鶴;饒莉;宋海波;劉淑華;陳嬌;;雙平面超聲心動圖初步臨床應(yīng)用研究[A];慶祝中國超聲醫(yī)學(xué)工程學(xué)會成立20周年——第八屆全國超聲醫(yī)學(xué)學(xué)術(shù)會議論文匯編[C];2004年

5 陳小燕;;雙平面隆乳患者術(shù)后相關(guān)教育及隨訪工作[A];中華醫(yī)學(xué)會整形外科學(xué)分會第十一次全國會議、中國人民解放軍整形外科學(xué)專業(yè)委員會學(xué)術(shù)交流會、中國中西醫(yī)結(jié)合學(xué)會醫(yī)學(xué)美容專業(yè)委員會全國會議論文集[C];2011年

6 陳小燕;;雙平面隆乳患者術(shù)后相關(guān)教育及隨訪工作[A];中華醫(yī)學(xué)會整形外科學(xué)分會第十一次全國會議、中國人民解放軍整形外科學(xué)專業(yè)委員會學(xué)術(shù)交流會、中國中西醫(yī)結(jié)合學(xué)會醫(yī)學(xué)美容專業(yè)委員會全國會議論文集[C];2011年

7 馬曉靜;黃國英;梁雪村;吳琳;陳張根;賈兵;;經(jīng)食管超聲心動圖在兒童復(fù)雜性先天性心臟病手術(shù)治療中的應(yīng)用價值[A];2005年上海市生物醫(yī)學(xué)工程學(xué)會學(xué)術(shù)年會論文集[C];2005年

8 楊云霞;李彬;鄭志玉;徐麗娟;王佳琪;張玲芬;;應(yīng)用內(nèi)窺鏡的“雙平面”假體隆乳術(shù)[A];2012全國中西醫(yī)結(jié)合醫(yī)學(xué)美容學(xué)術(shù)交流大會論文匯編[C];2012年

9 劉成勝;石蕾;丁平;黃元生;蒲蘭萍;車景龍;羅會勇;;雙平面長三角形截骨法在下頜骨肥大整形中的應(yīng)用[A];2012全國中西醫(yī)結(jié)合醫(yī)學(xué)美容學(xué)術(shù)交流大會論文匯編[C];2012年

10 吳中權(quán);焦彤;李金芳;;雙平面超聲在直腸癌術(shù)前評估中的應(yīng)用[A];中國超聲醫(yī)學(xué)工程學(xué)會第八屆全國腹部超聲學(xué)術(shù)會議論文匯編[C];2010年

相關(guān)重要報紙文章 前2條

1 UT斯達(dá)康(中國)有限公司 戴立;雙平面?zhèn)鬏斁W(wǎng)搶戰(zhàn)電信競爭先機(jī)[N];通信產(chǎn)業(yè)報;2004年

2 UT斯達(dá)康公司 戴立;雙平面方案建設(shè)下一代本地傳輸網(wǎng)[N];通信產(chǎn)業(yè)報;2004年

相關(guān)博士學(xué)位論文 前1條

1 謝錫炯;雙平面支持向量機(jī)的模型與算法研究[D];華東師范大學(xué);2016年

相關(guān)碩士學(xué)位論文 前3條

1 齊園;雙平面目標(biāo)模擬器控制器的工程化研究與實現(xiàn)[D];電子科技大學(xué);2013年

2 鄺宇;基于雙平面正交投影的血管截面圖像重建的研究[D];浙江大學(xué);2004年

3 張東旭;內(nèi)鏡下經(jīng)腋切口“雙平面”法再次隆乳的臨床研究[D];鄭州大學(xué);2013年

,

本文編號:2325991

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2325991.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶df6a9***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com