面向提高精度和可用性的衛(wèi)星導(dǎo)航數(shù)據(jù)處理技術(shù)研究
[Abstract]:Precision and availability are important indexes of satellite navigation system. The traditional coarse time localization method with 5 state variables can be used to locate in the weak signal environment such as vegetation shelter and indoor so as to improve the availability of service. However it needs to know the approximate position of the receiver. In addition, Beidou satellite navigation system is designed by hybrid constellation, which has the characteristics of high GEO satellite message rate and broadcasting grid ionospheric information. The high message rate of GEO satellite makes it possible to realize fast positioning. Reasonable use of the ionospheric information of the regional grid can effectively improve the accuracy of single point positioning. Under the above background, the thesis focuses on improving the accuracy and availability of satellite navigation system and obtains the following results: (1) aiming at the problem of low precision of obtaining almanac parameters by direct fitting method of traditional broadcast almanac, An improved calculation method of broadcast almanac based on long half axis compensation is proposed. The broadcast almanac parameters are calculated by increasing the variation of angular velocity and converting it to the compensation value of long half axis when the parameters are fitted. The example shows that the URE of the almanac parameters can be reduced from about 2000 meters to better than 900m by the traditional method. In addition, the redefinition of the 9-parameter almanac, which contains the variation of angular velocity, can double the URE. (2) to solve the problem that the traditional coarse time localization method needs to know the approximate position of the receiver, An improved coarse time location method based on pseudo-range fuzzy search and a fast location method based on high precision clock are proposed. The relationship between the distance between satellites and the maximum pseudo-range difference is used to reduce the search space. Can realize the quick localization when the approximate position is unknown. Numerical examples show that in the case of sub-millisecond pseudo-range after signal acquisition, the average alternative fuzzy combination number of the improved coarse time location method is about 672 using the L1 frequency observation data of the mars station of IGS, and the deviation of 1 / 3 and 5 seconds is obtained. The success rate of location was 99.96% and 99.79% respectively, and the success rate of other stations was 100. In addition, traversing the observation data of multiple stations shows that when the precision of auxiliary time is better than 15 microseconds, the fast positioning can be achieved in 100%. When it is better than 25 microseconds, it can achieve fast positioning in 99%. (3) taking advantage of the high speed and short frame synchronization time of GEO satellite navigation message in Beidou system, the elevation hypothesis and Doppler assisted fast positioning method are put forward, respectively. It can use GEO pseudo-range and auxiliary information to calculate the approximate position and realize the fast positioning before the frame synchronization of the non-GEO satellite. At the same time, it can avoid the problem of the solution failure of the rough positioning of the GEO satellite. An example shows that even if only three GEO satellites can be used in pseudo-range, rapid positioning can be achieved. Even if the GEO observation pseudo-range is less than 3, with sufficient Doppler information, (4) aiming at the problem that it is difficult to determine the positioning accuracy after the correction of the grid and Klobuchar model when only partial pseudo-distance can be corrected by ionospheric grid, an ionospheric correction method based on the PDOP comparison of position accuracy factor is proposed. By using grid and Klobuchar model, the PDOP construction test of observational data can be modified to select the ionospheric correction method to improve the positioning accuracy. Numerical examples show that the accuracy of this method is even slightly better than that of grid and Klobuchar model modification. Compared with the worst case without selection, the positioning accuracy of kun1,chu1 and lah1 stations is increased by 18.1g, respectively. 16.5% and 19.9% respectively. Finally, the paper summarizes the main work. The research results of this paper have been applied to the development of various types of receiver and signal source of satellite navigation system.
【學(xué)位授予單位】:國(guó)防科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN967.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 羅益鴻;王威;郗曉寧;;導(dǎo)航衛(wèi)星信號(hào)模擬器偽距生成實(shí)時(shí)仿真研究[J];計(jì)算機(jī)仿真;2009年07期
2 孫希延;施滸立;紀(jì)元法;;衛(wèi)星定位中偽距的廣義延拓外推[J];電子科技;2006年11期
3 姚軍生;黃建國(guó);;時(shí)間差分相位平滑偽距定位技術(shù)分析研究[J];計(jì)算機(jī)仿真;2010年05期
4 陳芳;袁洪;;基于單星偽距加多普勒的定位方法[J];微計(jì)算機(jī)信息;2009年10期
5 彭冬菊;胡小工;吳斌;;星載GPS偽距觀測(cè)量重建及定軌精度分析[J];遙感學(xué)報(bào);2010年06期
6 原洪峰;楊龍;蔣德;;不同實(shí)驗(yàn)條件下GPS偽距定位精度分析[J];全球定位系統(tǒng);2005年05期
7 涂剛毅;金世俊;祝雪芬;宋愛(ài)國(guó);;基于改進(jìn)粒子濾波算法的GPS非高斯偽距誤差修正[J];電子測(cè)量與儀器學(xué)報(bào);2009年06期
8 王嬋媛;徐建城;陳遠(yuǎn)均;;GPS靜態(tài)偽距方程代數(shù)解算法的研究[J];計(jì)算機(jī)工程與應(yīng)用;2011年05期
9 楊春鈞,袁信,謝克明;偽距、偽距增量、載波相位雙差/慣性深組合導(dǎo)航系統(tǒng)[J];太原理工大學(xué)學(xué)報(bào);1998年01期
10 耿延睿;周麗弦;;限定記憶法在GPS偽距靜態(tài)絕對(duì)定位中應(yīng)用[J];電子測(cè)量技術(shù);2000年02期
相關(guān)會(huì)議論文 前5條
1 ;資源三號(hào)與海洋二號(hào)衛(wèi)星在軌觀測(cè)數(shù)據(jù)質(zhì)量評(píng)估[A];第五屆中國(guó)衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)論文集-S3 精密定軌與精密定位[C];2014年
2 張鋒;郭海榮;楊睿峰;張婷;張健;;基于CPLC的北斗偽距方差自適應(yīng)估計(jì)方法[A];第四屆中國(guó)衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)論文集-S3精密定軌與精密定位[C];2013年
3 姚曉波;劉泉;;一種新的GPS偽距定位算法——偽距差法研究[A];可持續(xù)發(fā)展的中國(guó)交通——2005全國(guó)博士生學(xué)術(shù)論壇(交通運(yùn)輸工程學(xué)科)論文集(下冊(cè))[C];2005年
4 吳鵬;;一種分離多徑誤差的方法[A];船舶通信導(dǎo)航學(xué)術(shù)會(huì)議(1993)論文集[C];1993年
5 彭冬菊;胡小工;王小亞;吳斌;;采用精密星歷和重建偽距數(shù)據(jù)的FY-3衛(wèi)星定軌精度分析[A];第一屆中國(guó)衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)論文集(下)[C];2010年
相關(guān)博士學(xué)位論文 前3條
1 靖守讓;面向提高精度和可用性的衛(wèi)星導(dǎo)航數(shù)據(jù)處理技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2016年
2 崔建勇;多模區(qū)域差分增強(qiáng)系統(tǒng)相關(guān)技術(shù)研究[D];解放軍信息工程大學(xué);2012年
3 唐康華;GPS/MIMU嵌入式組合導(dǎo)航關(guān)鍵技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2008年
相關(guān)碩士學(xué)位論文 前8條
1 黃盼;GPS/INS深耦合系統(tǒng)抗欺騙式干擾關(guān)鍵技術(shù)研究[D];電子科技大學(xué);2014年
2 陳立;BDS/GPS組合系統(tǒng)偽距單點(diǎn)定位算法研究[D];南京理工大學(xué);2017年
3 朱峰;虛擬星載原子鐘誤差實(shí)時(shí)校正系統(tǒng)研制[D];中國(guó)科學(xué)院研究生院(國(guó)家授時(shí)中心);2011年
4 曾凡河;基于時(shí)間差分的單機(jī)單頻偽距定位及應(yīng)用[D];中南大學(xué);2007年
5 王海霞;艦船組合導(dǎo)航信息綜合集成技術(shù)應(yīng)用研究[D];哈爾濱工程大學(xué);2009年
6 劉帥;GPS/INS組合導(dǎo)航算法研究與實(shí)現(xiàn)[D];解放軍信息工程大學(xué);2012年
7 李靖松;基于偽距、偽距率組合導(dǎo)航技術(shù)的研究[D];南京理工大學(xué);2009年
8 溫子麟;GPS與GIS在機(jī)場(chǎng)管理中的研究和應(yīng)用[D];沈陽(yáng)工業(yè)大學(xué);2004年
,本文編號(hào):2324477
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2324477.html