視頻中人體行為識(shí)別若干問題研究
[Abstract]:Behavior recognition is the focus and focus of computer vision, machine learning, artificial intelligence and so on. The analysis and recognition of human behavior in image and video data in this direction have been applied in safety monitoring, disability monitoring, multimedia content understanding, human-computer interaction and virtual reality. However, the existing behavior recognition technology has many limitations in practical application. In order to meet the practical needs, this paper studies the problem of human behavior recognition in video. 1) In a certain scenario, the samples of some behaviors are extremely difficult to collect and how to use very few samples to quickly identify specific behaviors. 2) how to effectively identify specific behaviors in a more complex scene detectable by a pedestrian; 3) how to quickly and effectively identify a multi-class behavior in a more complex scene detectable by a pedestrian; and 4) in a complex scene where the pedestrian is not effectively detected, How to identify the multi-class behavior effectively. Based on the theory of pattern recognition, machine learning and so on, this paper develops a series of innovative research on the basis of the theory of pattern recognition, machine learning and so on. The main research work and contribution of this paper are as follows: 1) A global behavior representation method based on Hov voting is proposed, i.e., the representation of the displacement histogram sequence. The method comprises the following steps of: roughly estimating the motion area in the behavior video; then, using a two-dimensional displacement histogram to characterize the motion information of the human body in the continuous images according to the matching condition of the points of interest in the continuous multi-frame image in the moving area; and finally, according to the displacement histogram sequence, The behavior is identified by a measure of the similarity of the matrix cosine; for the identified behavior, the matching interest points accurately locate the spatiotemporal positions of the behavior. The experimental results show that the method can detect the specific behavior effectively under the static or background more uniform scene. In addition, the method adopts a coarse-to-fine behavior positioning mode, and effectively improves the characterization speed of the behavior. the method solves the problem of identification and detection of specific behaviors in rare cases of samples. The method comprises the following steps of: firstly detecting and tracking a human body, and performing space-time feature coding on the sequence shape characteristics of each part of the human body by using a multi-limiting Boltzmann machine (RBM); then the space-time feature codes of each part of the human body are coded by the RBM neural network as the global space-time feature representation of the behavioral video; and finally the behavior is identified by the trained support vector machine classifier. A large number of experiments verify the effectiveness of the method. The method for extracting the time-space features from the shape characteristic sequence of each part of the human body opens up a new perspective of behavioral feature extraction. A fast multi-class behavior recognition algorithm based on inverted index is proposed in this paper. The method comprises the following steps of: firstly, detecting and tracking an area of interest of a human body to be tracked, extracting shape motion characteristics, and constructing a behavior state binary tree by utilizing the characteristics through a hierarchical clustering method; based on the state binary tree, the behavior is characterized as a behavior state sequence rapidly; then, calculating the behavior state sequence corresponding to the two score vectors of each behavior category by constructing the behavior state inverted index table and the behavior state transition inverted index table; and finally, identifying the behavior according to the weighted score vector. Experiments show that the method can quickly identify the multi-class behavior. the application of the behavior state binary tree accelerates the characterization of the behavior state sequence of the behavior video, and the use of the inverted index table obviously improves the recognition speed of the multi-class behavior. The method solves the problem of fast recognition of multi-class behavior in complex scenes. 4) A method based on independent subspace analysis network is proposed for space-time feature coding of video behavior using spatial features learned from video. firstly, the method utilizes an independent subspace analysis network introduced with regularization constraint to study a set of spatial features which are slowly invariant in a set of time; and performing pooled processing on the features extracted from the sampled video blocks in a temporal domain and a spatial domain, and the local time-space characteristics of the identification behavior can be effectively identified. Then, the behavior is characterized using the extracted local space-time feature based on the feature bag (BOF) model. Finally, the nonlinear support vector machine classifier is adopted to identify the multi-class behavior. The experimental results show that the time-invariant regularization constraints and the introduction of de-noising criteria make the spatial features of learning and the extracted local time-space features have strong robustness to the clutter background, occlusion and other factors. The method solves the problem of multi-class behavior recognition in complex scenes.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李寧;須德;傅曉英;袁玲;;結(jié)合人體運(yùn)動(dòng)特征的行為識(shí)別[J];北京交通大學(xué)學(xué)報(bào);2009年02期
2 張偉東;陳峰;徐文立;杜友田;;基于階層多觀測模型的多人行為識(shí)別[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年07期
3 吳聯(lián)世;夏利民;羅大庸;;人的交互行為識(shí)別與理解研究綜述[J];計(jì)算機(jī)應(yīng)用與軟件;2011年11期
4 申曉霞;張樺;高贊;薛彥兵;徐光平;;一種魯棒的基于深度數(shù)據(jù)的行為識(shí)別算法[J];光電子.激光;2013年08期
5 鄭胤;陳權(quán)崎;章毓晉;;深度學(xué)習(xí)及其在目標(biāo)和行為識(shí)別中的新進(jìn)展[J];中國圖象圖形學(xué)報(bào);2014年02期
6 曾青松;余明輝;賀衛(wèi)國;李玲;;一種行為識(shí)別的新方法[J];昆明理工大學(xué)學(xué)報(bào)(理工版);2009年06期
7 谷軍霞;丁曉青;王生進(jìn);;基于人體行為3D模型的2D行為識(shí)別[J];自動(dòng)化學(xué)報(bào);2010年01期
8 李英杰;尹怡欣;鄧飛;;一種有效的行為識(shí)別視頻特征[J];計(jì)算機(jī)應(yīng)用;2011年02期
9 王新旭;;基于視覺的人體行為識(shí)別研究[J];中國新通信;2012年21期
10 王忠民;曹棟;;坐標(biāo)轉(zhuǎn)換在移動(dòng)用戶行為識(shí)別中的應(yīng)用[J];北京郵電大學(xué)學(xué)報(bào);2014年S1期
相關(guān)會(huì)議論文 前7條
1 苗強(qiáng);周興社;於志文;倪紅波;;一種非覺察式的睡眠行為識(shí)別技術(shù)研究[A];第18屆全國多媒體學(xué)術(shù)會(huì)議(NCMT2009)、第5屆全國人機(jī)交互學(xué)術(shù)會(huì)議(CHCI2009)、第5屆全國普適計(jì)算學(xué)術(shù)會(huì)議(PCC2009)論文集[C];2009年
2 齊娟;陳益強(qiáng);劉軍發(fā);;基于多模信息感知與融合的行為識(shí)別[A];第18屆全國多媒體學(xué)術(shù)會(huì)議(NCMT2009)、第5屆全國人機(jī)交互學(xué)術(shù)會(huì)議(CHCI2009)、第5屆全國普適計(jì)算學(xué)術(shù)會(huì)議(PCC2009)論文集[C];2009年
3 方帥;曹洋;王浩;;視頻監(jiān)控中的行為識(shí)別[A];2007中國控制與決策學(xué)術(shù)年會(huì)論文集[C];2007年
4 黃紫藤;吳玲達(dá);;監(jiān)控視頻中簡單人物行為識(shí)別研究[A];第18屆全國多媒體學(xué)術(shù)會(huì)議(NCMT2009)、第5屆全國人機(jī)交互學(xué)術(shù)會(huì)議(CHCI2009)、第5屆全國普適計(jì)算學(xué)術(shù)會(huì)議(PCC2009)論文集[C];2009年
5 安國成;羅志強(qiáng);李洪研;;改進(jìn)運(yùn)動(dòng)歷史圖的異常行為識(shí)別算法[A];第八屆中國智能交通年會(huì)優(yōu)秀論文集——智能交通與安全[C];2013年
6 王忠民;曹棟;;坐標(biāo)轉(zhuǎn)換在移動(dòng)用戶行為識(shí)別中的應(yīng)用研究[A];2013年全國通信軟件學(xué)術(shù)會(huì)議論文集[C];2013年
7 劉威;李石堅(jiān);潘綱;;uRecorder:基于位置的社會(huì)行為自動(dòng)日志[A];第18屆全國多媒體學(xué)術(shù)會(huì)議(NCMT2009)、第5屆全國人機(jī)交互學(xué)術(shù)會(huì)議(CHCI2009)、第5屆全國普適計(jì)算學(xué)術(shù)會(huì)議(PCC2009)論文集[C];2009年
相關(guān)重要報(bào)紙文章 前4條
1 李晨光;導(dǎo)入CIS要注意什么?[N];河北經(jīng)濟(jì)日?qǐng)?bào);2001年
2 農(nóng)發(fā)行鹿邑支行黨支部書記 行長 劉永貞;發(fā)行形象與文化落地農(nóng)[N];周口日?qǐng)?bào);2007年
3 東林;行為識(shí)別新技術(shù)讓監(jiān)控沒有“死角”[N];人民公安報(bào);2007年
4 田凱 徐蕊 李政育 信木祥;博物館安全的國際經(jīng)驗(yàn)[N];中國文物報(bào);2014年
相關(guān)博士學(xué)位論文 前10條
1 邵延華;基于計(jì)算機(jī)視覺的人體行為識(shí)別研究[D];重慶大學(xué);2015年
2 仝鈺;基于條件隨機(jī)場的智能家居行為識(shí)別研究[D];大連海事大學(xué);2015年
3 馮銀付;多模態(tài)人體行為識(shí)別技術(shù)研究[D];浙江大學(xué);2015年
4 姜新波;基于三維骨架序列的人體行為識(shí)別研究[D];山東大學(xué);2015年
5 韓姍姍;基于視覺的運(yùn)動(dòng)人體特征描述與行為識(shí)別研究[D];浙江工業(yè)大學(xué);2015年
6 裴利沈;視頻中人體行為識(shí)別若干問題研究[D];電子科技大學(xué);2016年
7 何衛(wèi)華;人體行為識(shí)別關(guān)鍵技術(shù)研究[D];重慶大學(xué);2012年
8 吳秋霞;復(fù)雜場景下的人體行為識(shí)別[D];華南理工大學(xué);2012年
9 于成龍;基于視頻的人體行為識(shí)別關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2014年
10 王亮;基于判別模式學(xué)習(xí)的人體行為識(shí)別方法研究[D];哈爾濱工業(yè)大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 陳鈺昕;基于時(shí)空特性的人體行為識(shí)別研究[D];燕山大學(xué);2015年
2 任亮;智能車環(huán)境下車輛典型行為識(shí)別方法研究[D];長安大學(xué);2015年
3 趙利強(qiáng);基于移動(dòng)軌跡分析的大鼠行為識(shí)別研究[D];浙江大學(xué);2016年
4 魏汝翔;基于人體運(yùn)動(dòng)捕捉數(shù)據(jù)的運(yùn)動(dòng)分析技術(shù)研究[D];北京交通大學(xué);2016年
5 孫笛;基于信息融合的惡意代碼威脅性分析及判定關(guān)鍵技術(shù)研究[D];解放軍信息工程大學(xué);2014年
6 田行輝;基于視頻的人體行為分析算法研究[D];東南大學(xué);2015年
7 黃詩輝;面向視頻的人類行為識(shí)別技術(shù)的研究與實(shí)現(xiàn)[D];東南大學(xué);2015年
8 徐嬌;高密度群體分割及其行為識(shí)別技術(shù)研究[D];中國計(jì)量學(xué)院;2015年
9 魏燁;基于智能手機(jī)傳感器的無監(jiān)督行為識(shí)別研究[D];蘭州大學(xué);2016年
10 鐘君;基于加速度傳感器的日常行為識(shí)別的特征提取方法研究[D];蘭州大學(xué);2016年
,本文編號(hào):2300837
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2300837.html