基于并行計算的蘋果采摘機器人關(guān)鍵技術(shù)研究
[Abstract]:Robot obstacle avoidance prediction model, image processing and storage optimization are important research contents in apple picking robot software system. The algorithm optimization and parallel processing of these modules is one of the shortcuts to improve the performance of apple picking robot software system. This paper describes a software and hardware frame structure of an extensible apple picking robot parallel system, and explains the feasibility and necessity of applying parallel technology in apple picking robot technology. Aiming at the related algorithms in the software system of apple picking robot, the design features and related performances of the module based on decision tree-based robot obstacle avoidance prediction model, noise-free apple image clustering and matching are studied and analyzed. The optimization algorithm or parallel algorithm of these algorithms is designed to improve the efficiency or accuracy of the algorithm by parallelizing the main line, using the MapReduce programming model and the cluster and other parallel technologies. The main research work and conclusion and innovation point are as follows: (1) the state space is mapped to the decision space relation matrix through the robot obstacle avoidance sample, which is the transformation space of decision tree decision. Traditional decision tree generation algorithm is limited to data mining and processing capability of large samples. A prediction model parallel generation algorithm based on MapReduce and attribute set kurtosis is presented in this paper. The decision tree generation in robot obstacle avoidance prediction can be processed in parallel. The algorithm avoids the disadvantage that the ID3 algorithm is not easy to remove noise and ignores the correlation between attributes by adopting the attribute set kurtosis as the selection criterion of the test property, reduces the attribute or the attribute set on the basis of taking into account the element interdependence in the attribute set and the attribute set, thereby removing the redundant attributes (set). Based on the simulation results of the robot obstacle avoidance operation example, the classification and decision-making of large-scale data samples can be processed by a parallel decision tree generation algorithm based on MapReduce and attribute set. At the same time, the complexity and the like are compared with the previous algorithm. has better extensibility and higher classification efficiency. (2) The parallel optimization algorithm based on spatial feature-based spectral clustering with noisy apple image segmentation is designed around the problems of image de-noising, optimization and parallel spectral clustering. The basic idea is that the three-dimensional space feature point compactness function of the image is constructed, so that the de-noising effect of the image is realized by constructing the pixel matrix of the adjacent points, the outlier matrix is used for splitting and linear representation by the other residual column vectors, the clustering optimization is realized by the outlier adjustment of the pixel matrix, The influence of outliers on the accuracy of the clustering of spectral clustering algorithms is reduced, and the MapReduce function is designed to parallelize. In order to verify the de-noising effect of spectral clustering method based on spatial features and the optimization of outliers, we add different degrees of Gaussian and salt-pepper noise to two apple images (the Gaussian noise and the probability of 0. 01, 0. 05 and 0. 1, respectively), The spectral clustering method, the spectral clustering method based on the spatial feature, the outlier optimization method and the apple target image segmentation map based on MapReduce are respectively obtained, and the segmentation accuracy of the four methods is calculated. The results show that the spectral clustering method is affected by the noise, and the partition effect of the spectral clustering method based on the spatial features is less affected by the noise, but there are still many wrong pixels in the boundary area. The outlier optimization method and the outlier optimization method based on MapReduce are superior to the spatial feature-based spectral clustering method in the segmentation of the boundary region; under the set experimental conditions, The accuracy of segmentation can be improved by 5% ~ 6% and 9% ~ 25% respectively with respect to the spectral clustering method based on spatial features and the traditional spectral clustering method, and the latter's time-acceleration ratio is about 11%. (3) An image matching parallel processing method based on clustering and reducing dimension number is proposed. The gray array information of large data volume can be processed, and its matching efficiency is improved without reducing similar measures. the method belongs to a fast one-dimensional projection template matching algorithm, A hierarchical nested string matching parallel algorithm based on isomorphic clusters is introduced to directly match the images and templates. This paper verifies the feasibility of parallel image processing of the new template fast parallel matching algorithm and compares the results. (4) In the process of the above algorithm experiment, the HDFS of the experimental platform Hadoop is the basic parallel storage structure, and the files such as the image meet the problem of non-equilibrium in the interview, and it has strong follow-up bias and timeliness. It is noted here that storage and pre-fetch optimization can improve and improve system efficiency. A scheme for combining different storage units (heterogeneous) into storage devices at different levels is proposed, and the files needed by this task are stored in a more suitable disk position, so that high-performance storage can be constructed under the condition that the cost factors are fully considered, and utilizing the pre-fetch technology to reduce the task waiting time of the MapReduce task. In this paper, by comparing several typical software and hardware parallel processing techniques, these techniques are applied to the main algorithms of apple picking robot software system (including robot obstacle avoidance prediction and decision-making, image processing and parallel storage optimization). Some useful conclusions are obtained through the example simulation and the running result analysis parallelization process of the platform test and the generation of intermediate code and the complexity analysis. It can also use MapReduce, cluster and other means to provide reference and reference for parallelization improvement.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:S225.93;TP242
【相似文獻】
相關(guān)期刊論文 前10條
1 王麗麗;郭艷玲;王迪;劉幻;;果蔬采摘機器人研究綜述[J];林業(yè)機械與木工設(shè)備;2009年01期
2 夏天;以色列的溫室采摘機器人[J];山東農(nóng)機化;1997年11期
3 方建軍;移動式采摘機器人研究現(xiàn)狀與進展[J];農(nóng)業(yè)工程學(xué)報;2004年02期
4 周天娟;張鐵中;;果蔬采摘機器人技術(shù)研究進展和分析[J];農(nóng)業(yè)機械;2006年22期
5 宋健;張鐵中;徐麗明;湯修映;;果蔬采摘機器人研究進展與展望[J];農(nóng)業(yè)機械學(xué)報;2006年05期
6 崔玉潔;張祖立;白曉虎;;采摘機器人的研究進展與現(xiàn)狀分析[J];農(nóng)機化研究;2007年02期
7 田素博;邱立春;秦軍偉;劉春芳;;國內(nèi)外采摘機器人機械手結(jié)構(gòu)比較的研究[J];農(nóng)機化研究;2007年03期
8 呂宏明;姬長英;;視覺技術(shù)在農(nóng)業(yè)采摘機器人中的應(yīng)用及發(fā)展[J];江西農(nóng)業(yè)學(xué)報;2008年02期
9 劉長林;張鐵中;楊麗;;果蔬采摘機器人研究進展[J];安徽農(nóng)業(yè)科學(xué);2008年13期
10 趙鵬;趙德安;;雙目立體視覺在果樹采摘機器人中的應(yīng)用[J];農(nóng)機化研究;2009年01期
相關(guān)會議論文 前7條
1 何蓓;劉剛;;果樹采摘機器人研究綜述[A];2007年中國農(nóng)業(yè)工程學(xué)會學(xué)術(shù)年會論文摘要集[C];2007年
2 趙德安;姬偉;張超;李占坤;;果樹采摘機器人控制系統(tǒng)設(shè)計[A];中國農(nóng)業(yè)工程學(xué)會電氣信息與自動化專業(yè)委員會、中國電機工程學(xué)會農(nóng)村電氣化分會科技與教育專委會2010年學(xué)術(shù)年會論文摘要[C];2010年
3 趙德安;呂繼東;姬偉;陳玉;張穎;;果樹采摘機器人及控制系統(tǒng)研制[A];中國農(nóng)業(yè)工程學(xué)會2011年學(xué)術(shù)年會論文集[C];2011年
4 石興祿;鄒湘軍;盧俊;陳強;陳燕;王紅軍;劉天湖;;虛擬采摘機器人統(tǒng)一建模與三維動態(tài)仿真[A];慶祝中國力學(xué)學(xué)會成立50周年暨中國力學(xué)學(xué)會學(xué)術(shù)大會’2007論文摘要集(下)[C];2007年
5 劉繼展;李萍萍;李智國;倪齊;;番茄采摘機器人真空吸盤裝置設(shè)計及試驗研究[A];紀念中國農(nóng)業(yè)工程學(xué)會成立30周年暨中國農(nóng)業(yè)工程學(xué)會2009年學(xué)術(shù)年會(CSAE 2009)論文集[C];2009年
6 袁挺;李偉;譚豫之;楊慶華;高峰;任永新;;溫室環(huán)境下黃瓜采摘機器人信息獲取技術(shù)研究[A];走中國特色農(nóng)業(yè)機械化道路——中國農(nóng)業(yè)機械學(xué)會2008年學(xué)術(shù)年會論文集(下冊)[C];2008年
7 魏錫光;王庫;;仿自然環(huán)境條件下番茄采摘機器人設(shè)計研究[A];中國農(nóng)業(yè)工程學(xué)會電氣信息與自動化專業(yè)委員會、中國電機工程學(xué)會農(nóng)村電氣化分會科技與教育專委會2010年學(xué)術(shù)年會論文摘要[C];2010年
相關(guān)重要報紙文章 前2條
1 本報記者 段佳;果蔬采摘機器人有了三維視力[N];大眾科技報;2009年
2 呂繼東 趙德安 姬偉 陳玉;淺談國內(nèi)外采摘機器人[N];中國農(nóng)機化導(dǎo)報;2014年
相關(guān)博士學(xué)位論文 前10條
1 顧玉宛;基于并行計算的蘋果采摘機器人關(guān)鍵技術(shù)研究[D];江蘇大學(xué);2016年
2 顧寶興;智能移動式水果采摘機器人系統(tǒng)的研究[D];南京農(nóng)業(yè)大學(xué);2012年
3 呂繼東;蘋果采摘機器人視覺測量與避障控制研究[D];江蘇大學(xué);2012年
4 劉繼展;番茄采摘機器人真空吸持系統(tǒng)分析與優(yōu)化控制研究[D];江蘇大學(xué);2010年
5 黃鋁文;蘋果采摘機器人視覺識別與路徑規(guī)劃方法研究[D];西北農(nóng)林科技大學(xué);2013年
6 紀超;溫室果蔬采摘機器人視覺信息獲取方法及樣機系統(tǒng)研究[D];中國農(nóng)業(yè)大學(xué);2014年
7 李智國;基于番茄生物力學(xué)特性的采摘機器人抓取損傷研究[D];江蘇大學(xué);2011年
8 呂強;柑橘采摘機器人工作場景信息感知技術(shù)與路徑規(guī)劃研究[D];江蘇大學(xué);2010年
9 戚利勇;黃瓜采摘機器人視覺關(guān)鍵技術(shù)及系統(tǒng)研究[D];浙江工業(yè)大學(xué);2011年
10 謝忠紅;采摘機器人圖像處理系統(tǒng)中的關(guān)鍵算法研究[D];南京農(nóng)業(yè)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 王亞平;自主采摘機器人競賽平臺系統(tǒng)研究[D];江西理工大學(xué);2015年
2 李珈慧;蘋果采摘機器人移動平臺機械系統(tǒng)的設(shè)計及仿真[D];南京農(nóng)業(yè)大學(xué);2014年
3 賀橙林;基于機器視覺的氣動采摘機器人研究[D];上海交通大學(xué);2015年
4 李敏;果蔬快速采摘機器人柔性負載剛?cè)狁詈辖Ec仿真[D];北方工業(yè)大學(xué);2016年
5 田麗芳;基于純滾動轉(zhuǎn)向的采摘機器人輪式AGV系統(tǒng)設(shè)計與試驗研究[D];江蘇大學(xué);2016年
6 李占坤;果樹采摘機器人控制系統(tǒng)研究與設(shè)計[D];江蘇大學(xué);2010年
7 趙慶波;果樹采摘機器人控制與避障技術(shù)研究[D];江蘇大學(xué);2008年
8 蘇帥;獼猴桃采摘機器人信息感知的基礎(chǔ)研究[D];西北農(nóng)林科技大學(xué);2013年
9 陳天宏;雙目采摘機器人路徑優(yōu)化設(shè)計的研究[D];東北農(nóng)業(yè)大學(xué);2010年
10 楊文亮;蘋果采摘機器人機械手結(jié)構(gòu)設(shè)計與分析[D];江蘇大學(xué);2009年
,本文編號:2292724
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2292724.html