基于左手傳輸線(xiàn)的耦合線(xiàn)研究
[Abstract]:Left-handed transmission line is a synthetic transmission line with negative permittivity and permeability. When the electromagnetic wave propagates, the wave vector (?) Electric field And magnetic field (?) The relationship between them obeys the law of left hand. Since left-handed transmission lines have large slow-wave coefficients at the low frequency stage, miniaturized microwave devices can be designed using left-handed transmission lines, but the research on left-handed transmission lines and left-handed coupling lines is still in the exploratory stage. Especially in the mode extraction of the left-handed transmission line and the left-handed coupling line. In this paper, the periodic solution of left-handed transmission line and the periodic solution of left-handed coupling line based on scattering parameters are presented. By using periodic Bloch-Floquet boundary, the complex propagation constants of symmetric left-handed coupling line and asymmetric left-handed coupling line are calculated accurately, and the above method is realized by Mathematica program. First of all, different series capacitors and parallel inductors are designed in this paper. The periodic solutions of left-handed transmission lines and left-handed coupling lines are proposed based on scattering parameters in this paper. The dispersion characteristic curves of left-handed transmission lines and left-handed coupling lines with different number of periodic structures are analyzed. When the periodic structure reaches a certain number, the dispersion characteristic curve of the left-handed transmission line and the left-handed coupling line converges. The dispersion curve calculated by the traditional method based on lumped parameter equivalent circuit model is basically consistent with the periodic solution of a periodic structure in this paper, but the dispersion curve does not converge at this time. By designing different series capacitors, the coupling bandwidth of the composite left-handed coupling line can be changed, and the forward coupling amount of the composite left-handed coupling line can be changed by designing different parallel inductors. In addition, a method of synthesizing asymmetric left-handed coupling wires is proposed. The symmetrical and asymmetric left-handed coupling lines proposed in this paper are tested by the standard 130 nm CMOS process. In this paper, three kinds of directional couplers are designed. The first is the high directivity of the right hand / left hand coupler. The coupler can realize the 3-dB coupling degree and the isolation degree of the 38dB at the same time. The second is a symmetric left-handed 10-dB forward coupler, which has a length of only 0.108 位 g, which is much smaller than that of the traditional right-handed forward coupler, and the third type of asymmetric left-handed 3-dB forward coupler, which is coupled by inductance. Compared with the symmetrical left hand coupler, the size of the coupler can be reduced more. The second and third forward couplers are offline and tested using the standard CMOS 130 nm 1P8M process. In addition, because the terahertz platform can only measure two-port microwave devices, the method of measuring four-port microwave devices using two-port vector network analyzer is also deduced in this paper. Finally, a miniaturized antenna is designed using the symmetric left-handed coupling line of the defective ground structure. The antenna operates in the radiation frequency band of the differential excitation left-handed coupling line, compared with the traditional antenna fabricated from the single left-handed transmission line. The antenna has higher radiation efficiency and maximum gain. The size of the antenna is only 165 渭 m ~ 90 渭 m.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TN622
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 閻世強(qiáng);林強(qiáng);;雙耦合線(xiàn)巴倫設(shè)計(jì)[J];現(xiàn)代雷達(dá);2008年01期
2 陳兆清;高葆新;;準(zhǔn)平面多導(dǎo)體耦合線(xiàn)的直線(xiàn)法全波分析[J];微波學(xué)報(bào);1989年02期
3 王文騏,夏冠群,陸祝平;頻帶反射型腔穩(wěn)體效應(yīng)振蕩器的最佳耦合線(xiàn)長(zhǎng)度[J];電子學(xué)報(bào);1982年06期
4 周亞琴 ,劉東泰;光電耦合線(xiàn)性隔離電路[J];電測(cè)與儀表;1984年08期
5 袁乃昌,,何建國(guó),赫崇俊,戴晴,劉克成,毛均杰;單片集成傳輸線(xiàn)──共面耦合線(xiàn)、共面耦合帶線(xiàn)及矩形微屏蔽的共面耦合線(xiàn)的新研究[J];國(guó)防科技大學(xué)學(xué)報(bào);1995年04期
6 劉立青;閔潔;鹿磊光;;任意鏡像阻抗平行耦合線(xiàn)濾波器的設(shè)計(jì)[J];無(wú)線(xiàn)電工程;2008年04期
7 李琳;李;麗娟;高長(zhǎng)征;谷雪松;;電介質(zhì)半空間兩耦合線(xiàn)天線(xiàn)的時(shí)域積分方程法[J];電波科學(xué)學(xué)報(bào);2008年03期
8 厲強(qiáng);楊濤;金龍;尉旭波;;LTCC小型化Balun設(shè)計(jì)[J];電子科技大學(xué)學(xué)報(bào);2008年S1期
9 蔡云;;一種通過(guò)電感耦合線(xiàn)圈高效低靈敏度地穿越皮膚進(jìn)行能量和數(shù)據(jù)的傳輸[J];國(guó)外醫(yī)學(xué).生物醫(yī)學(xué)工程分冊(cè);1991年01期
10 王星;彭承琳;趙德春;韓亮;;基于VLSI無(wú)線(xiàn)供能通信系統(tǒng)耦合線(xiàn)圈實(shí)驗(yàn)[J];儀器儀表學(xué)報(bào);2009年11期
相關(guān)會(huì)議論文 前3條
1 褚慶昕;李舒濤;;用于超寬帶帶通濾波器的雙交指耦合線(xiàn)[A];2009年全國(guó)微波毫米波會(huì)議論文集(上冊(cè))[C];2009年
2 王蘊(yùn)儀;戚曉葭;束永慧;;屏蔽懸置微帶線(xiàn)和寬邊耦合線(xiàn)的分析公式[A];1987年全國(guó)微波會(huì)議論文集(中)[C];1987年
3 葉海榮;清唐;;平行耦合線(xiàn)帶通濾波器的機(jī)輔分析與設(shè)計(jì)制作[A];1987年全國(guó)微波會(huì)議論文集(下)[C];1987年
相關(guān)博士學(xué)位論文 前3條
1 李光福;基于左手傳輸線(xiàn)的耦合線(xiàn)研究[D];天津大學(xué);2016年
2 王璽;微波集成介質(zhì)TM模濾波器及耦合線(xiàn)功分電路的研究[D];上海交通大學(xué);2014年
3 梁立明;基于反耦合線(xiàn)和信號(hào)干擾寬帶濾波器的理論研究與設(shè)計(jì)[D];北京郵電大學(xué);2014年
相關(guān)碩士學(xué)位論文 前4條
1 張寧;基于耦合線(xiàn)圈復(fù)用的ICPT系統(tǒng)能量信號(hào)分時(shí)傳輸技術(shù)[D];重慶大學(xué);2015年
2 陳書(shū)雄;Marchand巴倫建模優(yōu)化及設(shè)計(jì)方法研究[D];江蘇大學(xué);2016年
3 趙寶媛;高氣壓等離子體微波共振探針的優(yōu)化研究[D];東華大學(xué);2016年
4 李順;基于耦合線(xiàn)的雙頻匹配結(jié)構(gòu)及其在雙頻功率放大器中的實(shí)現(xiàn)[D];北京郵電大學(xué);2013年
本文編號(hào):2258151
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2258151.html