基于滾環(huán)DNA擴(kuò)增和納米材料的生物傳感分析方法研究
[Abstract]:With the development of analytical science, more and more information about protein, nucleic acid, enzyme activity and small biomolecules in the field of life sciences needs to be analyzed and detected by means of biosensor technology. In recent years, new molecular biotechnologies have emerged, and have been developed and improved in scientific research and practical applications. However, with the continuous improvement of medical diagnosis and scientific research, the requirements for biomolecular detection methods have become increasingly high. Qualitative or quantitative methods with low cost, simplicity and rapidity to better meet the needs of research and practical applications have become a major challenge for analytical chemistry researchers. The method was applied to enzyme activity, nucleic acid, protein and small molecule detection, and the feasibility, reliability and accuracy of these techniques were preliminarily verified by the analysis of actual samples. In Chapter 2, we constructed a novel fluorescent "light-up" biosensor for highly sensitive detection of the activity of H OGG1. The method was based on the target-induced formation of 5'-terminal phosphorylation probes and the ability to produce self-catalysis. The detection limit of this method for H OGG1 can be as low as 0.001 U/m L. This low sensitivity is mainly attributed to the lack of increased background signal and the double signal amplification strategy we constructed. Single nucleotide polymorphism (SNP) is the most common type of genetic variation at the genome level. If the mutation occurs in the coding region of the genetic gene, it may cause the encoded egg. The development of highly sensitive, highly specific detection methods for single nucleotide polymorphisms is of great significance for prenatal genetic diagnosis. In Chapter 3, we utilize the highly specific recognition ability of Ecoli DNA ligase for single base mismatches in conjunction with the rolling ring in the previous chapter. A highly sensitive and specific method for detecting single nucleotide polymorphisms has been developed by amplification and DNA enzyme cycling amplification techniques. The padlocked probes can only be hybridized with fully complementary target DNA before they can be linked into rings by Ecoli DNA ligase and trigger cascade signal amplification. Mismatched DNA and the padlocked probes can not be completely heterozygous. The cross and Ecoli DNA ligase can identify incomplete hybridization probes, so the padlocked probes can not be connected into circular probes, and then no cascade signal amplification reaction occurs, so no fluorescence signal can be detected. The lower limit is 2.6 pm. In addition, because of the ability of DNA ligase to recognize single base mismatch at the junction site, this method has good specificity for mutant DNA in wild and mutant samples mixed in different proportions. In Chapter 4, we demonstrated the ability of endoiv to cleave AP sites in single stranded DNA (sdna). We found that endoiv has a better cleavage ability to AP sites in ssDNA than to AP sites in double stranded dna. A double-signal amplification system was constructed to detect the activity of enzymes and proteins with high sensitivity. The double-signal amplification system was mainly composed of exoiii-assisted signal amplification and ring-rolling amplification techniques. The detection limit of endoiv is 0.008u/ml and streptavidin (sa) is 2.5pm. In addition, the method has good specificity for other substances that may interfere with the detection of endoiv. This chapter provides a new platform for the detection of enzymes and proteins, and has the potential for biological analysis, disease diagnosis and drugs. Acetylcholinesterase, a key enzyme in the animal central nervous system, plays an important role in Alzheimer's disease, inflammation, and neurotoxicity. Acetylcholinesterase maintains neurotransmitter levels by hydrolyzing acetylcholine to choline. Inhibitors of enzymes can keep acetylcholine active and accumulate in vivo with fatal consequences. Therefore, it is of great significance to determine the activity of acetylcholinesterase and screen its inhibitors. The method uses thioacetylcholine as the substrate of acetylcholinesterase. Under the hydrolysis of acetylcholinesterase, thioacetylcholine is hydrolyzed to thiocholine. The free thiol group of thioacetylcholine can coordinate with copper nanoparticles, and then the thioacetylcholine can coordinate with copper nanoparticles. The sensor has good analytical performance. The detection range of acetylcholinesterase is 0-5mu/ml, the detection limit is 0.026mu/ml, and the specificity of other proteins that may interfere with the detection is very good. In addition, the sensor has been used to detect acetylcholinesterase inhibitors. Phosphorus insecticides were used to detect the model of phosphorus oxide as a selective inhibitor. The detection mechanism was mainly that organic phosphorus could inhibit the hydrolysis of acetylcholinesterase to thioacetylcholine, and the fluorescence of copper nanoparticles could not be quenched without the formation of thiocholine products. Detection of organophosphorus. The IC50 value of the sensor for paraoxon is about 84pg/ml. Furthermore, the method has been applied to the determination of paraoxon in real samples with satisfactory results. The work in this chapter may provide a potential component for enzymes and their inhibitors in biomedical and clinical applications. At present, fluorescent nanoparticles have attracted more and more attention due to their potential applications in labeling, sensor, imaging and biomedical fields. In Chapter 6, we use manganese dioxide as an oxidant to synthesize fluorescent polydopamine nanoparticles. In the presence of manganese dioxide, dopamine can be rapidly oxidized to dopamine. Baquinone is then spontaneously polymerized to form fluorescent polydopamine nanoparticles. Further, a low-cost, rapid, sensitive and selective biosensor for the detection of glutathione is constructed using fluorescent polydopamine nanoparticles as indicators. Glutathione oxidizes manganese dioxide to manganese ions, and manganese is separated. The fluorescence intensity of fluorescent polydopamine nanoparticles directly reflects the concentration of glutathione. The sensor has good analytical performance for the detection of glutathione with high sensitivity and ideal selectivity. Sensors have a good response to the detection of glutathione in real human blood samples, indicating that this method has great potential in bioanalysis and clinical diagnosis.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TP212.3;TB383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙廣超 ,朱俊杰 ,陳洪淵 ,王雪梅 ,陸祖宏;Spectroscopic and Spectroelectrochemical Studies of Interaction of Nile Blue with DNA[J];Chinese Journal of Chemistry;2002年01期
2 張鵬 ,孟繼本 ,龍江 ,松浦輝男 ,王永梅;Synthesis of Benzo [α]phenoxazin-5-one Derivatives and Their Interactions with DNA[J];Chinese Journal of Chemistry;2002年05期
3 陳繪麗 ,楊頻;A Novel Cobalt(III) Mixed-polypyridyl Complex: Synthesis, Characterization and DNA Binding[J];Chinese Journal of Chemistry;2002年12期
4 周莉,李樹蕾,陳輝,黃可欣,聶毓秀;DNA Damage Effect of Mixed Rare Earth Changle Crossing Placenta Barrier on Rat Embryo[J];Journal of Rare Earths;2003年02期
5 陳婧,康敬萬;Interaction between Eu(bpy)_3~(3+) Complex and DNA by Fluorophotometry[J];Journal of Rare Earths;2003年S1期
6 張強(qiáng);企業(yè)DNA:核心競爭力[J];中國石化;2004年06期
7 ;Interaction between DNA with Complex of Eu~(3+)-Rutin by UV-Visible Spectroscopy and Electrochemistry[J];Journal of Rare Earths;2005年04期
8 周春瓊,鄧先和,楊頻;Interaction of Complex of Europium and Hbbimp with DNA[J];Journal of Rare Earths;2005年05期
9 ;Synthesis of a New Cobalt (II) Complex and its Interaction with DNA[J];Chinese Chemical Letters;2005年04期
10 ;Spectroscopic and Electrochemical Studies of the Interaction Between Fuchsin Basic and DNA[J];Chemical Research in Chinese Universities;2006年03期
相關(guān)會(huì)議論文 前10條
1 Michael J.Siefkes;Cory O.Brant;Ronald B.Walter;;A novel real-time XL-PCR for DNA damage detection[A];漁業(yè)科技創(chuàng)新與發(fā)展方式轉(zhuǎn)變——2011年中國水產(chǎn)學(xué)會(huì)學(xué)術(shù)年會(huì)論文摘要集[C];2011年
2 ;Hormonal Regulation and Tumorigenic Role of DNA Methyltransferase[A];2011中國婦產(chǎn)科學(xué)術(shù)會(huì)議暨浙江省計(jì)劃生育與生殖醫(yī)學(xué)學(xué)術(shù)年會(huì)暨生殖健康講習(xí)班論文匯編[C];2011年
3 Dongmei Zhao;Fan Jin;Yuli Qian;Hefeng Huang;;Expression patterns of Dnmtl and Dnmt3b in preimplantational mouse embryos and effects of in-vitro cultures on their expression[A];中華醫(yī)學(xué)會(huì)第十次全國婦產(chǎn)科學(xué)術(shù)會(huì)議婦科內(nèi)分泌會(huì)場(婦科內(nèi)分泌學(xué)組、絕經(jīng)學(xué)組、計(jì)劃生育學(xué)組)論文匯編[C];2012年
4 姜東成;蔣稼歡;楊力;蔡紹皙;K.-L.Paul Sung;;在聚吡咯微點(diǎn)致動(dòng)下的DNA雜交行為[A];2008年全國生物流變學(xué)與生物力學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2008年
5 白明慧;翁小成;周翔;;聯(lián)鄰苯二酚類小分子作為DNA交聯(lián)劑的研究[A];第六屆全國化學(xué)生物學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2009年
6 張曄;杜智;楊斌;高英堂;;檢測外周血中游離DNA的應(yīng)用前景(綜述)[A];天津市生物醫(yī)學(xué)工程學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)暨首屆生物醫(yī)學(xué)工程前沿科學(xué)研討會(huì)論文集[C];2009年
7 周紅;鄭江;王良喜;丁國富;魯永玲;潘文東;羅平;肖光夏;;CpG DNA誘導(dǎo)全身炎癥反應(yīng)綜合征的作用及其機(jī)制研究[A];全國燒傷創(chuàng)面處理、感染專題研討會(huì)論文匯編[C];2004年
8 ;EFFECTS OF Ku70-DEFICIENT ON ARSENITE-INDUCED DNA DOUBLE STRAND BREAKS, CHROMOSOMAL ALTERATIONS AND CELL CYCLE ARREST[A];海峽兩岸第三屆毒理學(xué)研討會(huì)論文摘要[C];2005年
9 李經(jīng)建;冀中華;蔡生民;;小溝結(jié)合方式中的DNA媒介電荷轉(zhuǎn)移[A];第十三次全國電化學(xué)會(huì)議論文摘要集(下集)[C];2005年
10 ;The interaction between Levofloxacine Hydrochloride and DNA mediated by Cu~(2+)[A];湖北省化學(xué)化工學(xué)會(huì)2006年年會(huì)暨循環(huán)經(jīng)濟(jì)專家論壇論文集[C];2006年
相關(guān)重要報(bào)紙文章 前10條
1 本報(bào)記者 袁滿;平安:把“領(lǐng)先”作為DNA[N];經(jīng)濟(jì)觀察報(bào);2006年
2 舒放;編織一個(gè)DNA納米桶[N];醫(yī)藥經(jīng)濟(jì)報(bào);2006年
3 閆潔;英兩無罪公民起訴要求銷毀DNA記錄[N];新華每日電訊;2008年
4 何德功;日本制成診斷魚病的“DNA書”[N];農(nóng)民日報(bào);2004年
5 本報(bào)記者 張巍巍;DNA樣本也能作假[N];科技日報(bào);2009年
6 周斌偉 鄒巍;蘇州警方應(yīng)用DNA技術(shù)一年偵破案件1887起[N];人民公安報(bào);2011年
7 本報(bào)記者 楊天笑;揭秘“神探”DNA[N];蘇州日報(bào);2011年
8 第四軍醫(yī)大學(xué)基礎(chǔ)醫(yī)學(xué)部生物化學(xué)與分子生物學(xué)教研室教授 李福洋;破除法老DNA的咒語[N];東方早報(bào);2011年
9 常麗君;DNA電路可檢測導(dǎo)致疾病的基因損傷[N];科技日報(bào);2012年
10 常麗君;效率和質(zhì)量:“DNA制造業(yè)”兩大障礙被攻克[N];科技日報(bào);2012年
相關(guān)博士學(xué)位論文 前10條
1 唐陽;基于質(zhì)譜技術(shù)的基因組DNA甲基化及其氧化衍生物分析[D];武漢大學(xué);2014年
2 池晴佳;DNA動(dòng)力學(xué)與彈性性質(zhì)研究[D];重慶大學(xué);2015年
3 胡璐璐;哺乳動(dòng)物DNA去甲基化過程關(guān)鍵酶TET2的三維結(jié)構(gòu)與P暬蒲芯縖D];復(fù)旦大學(xué);2014年
4 馬寅洲;基于滾環(huán)擴(kuò)增的DNA自組裝技術(shù)的研究[D];南京大學(xué);2014年
5 黃學(xué)鋒;精子DNA碎片的臨床意義:臨床和實(shí)驗(yàn)研究[D];復(fù)旦大學(xué);2013年
6 隋江東;APE1促進(jìn)DNA-PKcs介導(dǎo)hnRNPA1磷酸化及其在有絲分裂期端粒保護(hù)中的作用[D];第三軍醫(yī)大學(xué);2015年
7 劉松柏;結(jié)構(gòu)特異性核酸酶FEN1在DNA復(fù)制及細(xì)胞周期過程中的功能性研究[D];浙江大學(xué);2015年
8 王璐;哺乳動(dòng)物中親本DNA甲基化的重編程與繼承[D];中國科學(xué)院北京基因組研究所;2015年
9 齊文靖;染色質(zhì)改構(gòu)蛋白BRG1在DNA雙鏈斷裂修復(fù)中的作用及機(jī)制研究[D];東北師范大學(xué);2015年
10 龍湍;水稻T-DNA插入突變?nèi)后w側(cè)翼序列的分離分析和OsaTRZ2的克隆與功能鑒定[D];華中農(nóng)業(yè)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 董洪奎;面向可視化納米操作的DNA運(yùn)動(dòng)學(xué)建模及誤差實(shí)時(shí)校正方法[D];沈陽理工大學(xué);2014年
2 聞金燕;水溶性羧基和吡啶基咔咯大環(huán)與DNA和人血清蛋白的相互作用[D];華南理工大學(xué);2015年
3 江懌雨;水溶性羧酸卟啉及其配合物與DNA和人血清蛋白的相互作用[D];華南理工大學(xué);2015年
4 高志森;比較外周游離循環(huán)腫瘤DNA與癌胚抗原監(jiān)測非小細(xì)胞肺癌根治術(shù)前后腫瘤負(fù)荷變化的初步研究[D];福建醫(yī)科大學(xué);2015年
5 丁浩;血漿循環(huán)DNA完整性及多基因甲基化對肺癌診斷價(jià)值的研究[D];河北大學(xué);2015年
6 王鵬;基于碳點(diǎn)@氧化石墨烯復(fù)合材料DNA生物傳感器的構(gòu)建及用于PML/RARα基因檢測[D];福建醫(yī)科大學(xué);2015年
7 李海青;轉(zhuǎn)堿篷和鹽角草總DNA的耐鹽紫花苜蓿的選育[D];內(nèi)蒙古大學(xué);2015年
8 李婷婷;小鼠DNA模式識別重要受體的分子結(jié)構(gòu)特征及其功能研究[D];中國農(nóng)業(yè)科學(xué)院;2015年
9 劉瑞斯;抗癌藥物奧沙利鉑與DNA相互作用的原子力顯微鏡觀察研究[D];東北林業(yè)大學(xué);2015年
10 熊忠;芳香二肽與一價(jià)金屬離子間相互作用及DNA切割活性的研究[D];鄭州大學(xué);2015年
,本文編號:2251077
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2251077.html