光學(xué)遙感圖像質(zhì)量提升及評價技術(shù)研究
[Abstract]:Optical remote sensing imaging is an important means of information detection. It depends on receiving the radiation of the target itself for information acquisition. It has important application value in civil areas such as urban planning, environmental monitoring, resource exploration, reconnaissance and early warning, target recognition and other military fields. Degradation factors, including target radiation, atmospheric disturbance, optical imaging system, electronic signal conversion, satellite platform flutter, etc., will cause the degradation of remote sensing images to varying degrees, resulting in the degradation of image quality, affecting the subsequent processing of images, seriously restricting the application of remote sensing images. Under the existing hardware conditions, how to improve the quality of remote sensing images by means of software processing has always been the focus of attention. In addition, the establishment of objective and perfect quantitative evaluation criteria for remote sensing images, and the adjustment of satellite parameters have been the focus of attention. In this paper, the deterioration factors of remote sensing imaging links are analyzed, and combined with visual saliency characteristics, the noise level estimation and noise image quality evaluation methods of remote sensing images are studied. Various processing algorithms for improving remote sensing image quality are studied and put forward, and the lunar model is considered. In order to improve the quality of blurred image, a pertinent image restoration scheme and evaluation method are designed to meet the task requirements. The imaging link model of optical remote sensing image is analyzed, and the terrain model, atmospheric transmission radiation model, camera model and orbit attitude model are established. Each type of degradation factor is analyzed, the causes of image degradation are analyzed, and the corresponding mathematical model is established. The technology of remote sensing image quality improvement is studied in depth. Aiming at the problem of single image restoration, an improved RL non-blind restoration method based on adaptive reference is proposed, which introduces two stages of adaptive reference. Image edge information is calculated more accurately, which has good performance in ringing suppression and detail preservation. Using the long exposure blurred image and the short exposure noise image of the same target scene, an image restoration algorithm based on the long exposure image pair and the short exposure image pair is proposed. Local constraint mask matrix and saliency weight map are introduced to enhance the image effectively. For remotely sensed image denoising, a method of remotely sensed image denoising based on non-downsampled contour wave transform and relative total variational constraints is proposed, and a remote sensing image fusion method based on multi-source image fusion is proposed to synthetically utilize the remote sensing image information of different bands. Multi-band image fusion based on saliency extraction and multi-scale decomposition is studied. The fusion results effectively preserve and enhance the information of different bands of images, and significantly improve the image information. Typical image quality evaluation methods are summarized. Several special evaluation methods for optical remote sensing images are introduced. In order to realize the effective separation of image signal components and noise components, the affine reconstruction model of image signal is constructed. The noise image is divided into several image blocks of the same size, and the signal graph is obtained by solving the affine reconstruction model. On the basis of this, an image noise and signal-to-noise ratio estimation method based on noise level accumulation is proposed, and the intensity-to-noise scatter distribution maps of each image block are calculated. The cumulative value of noise level and the cumulative index value of signal-to-noise ratio are obtained by weighting the standard deviation of noise in each region of image intensity. Affine reconstruction model is used to propose a non-reference quality evaluation method for noisy images. The evaluation algorithm has good subjective and objective consistency and accuracy for different databases. Two kinds of image restoration algorithms are proposed and the whole experiment scheme is worked out. The theoretical simulation experiment and the ground real-time simulation experiment are carried out respectively. The quality of the images before and after restoration is evaluated and compared. The effectiveness of the two restoration algorithms is verified. The compressed blocking effect in the original blurred image verifies that the restoration results can effectively remove the blocking effect. A comprehensive image quality improvement evaluation method without reference is designed. The image quality of the reconstructed results from the real lunar images is evaluated and compared. The results show that the restoration algorithm can significantly improve the image quality.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TP751
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳江;陳登科;李娜;張輝;高峰;王豐;勾磊;陳凡;;影響影院放映圖像質(zhì)量主要因素的分析和研究[J];現(xiàn)代電影技術(shù);2012年07期
2 朱華,漢斯·瑞利,馬克·海沃斯;關(guān)于線性數(shù)字層面圖像質(zhì)量改進(jìn)的研究[J];儀器儀表學(xué)報;1985年03期
3 王龍;;提高放像機(jī)重放圖像質(zhì)量的方法[J];家用電器;1998年02期
4 李子玉;;任務(wù)圖像質(zhì)量監(jiān)測方法的探討[J];載人航天;2008年03期
5 周廣榮;;影響掃描電鏡圖像質(zhì)量的因素分析[J];現(xiàn)代儀器;2010年06期
6 楊守義,羅偉雄;一種基于高階統(tǒng)計量的圖像質(zhì)量客觀評價方法[J];北京理工大學(xué)學(xué)報;2001年05期
7 戴仲毅;錢軍浩;;軟包裝印刷圖像質(zhì)量的檢測方法與模型[J];包裝工程;2007年03期
8 劉海霞;;去噪圖像質(zhì)量的評價[J];內(nèi)蒙古水利;2009年01期
9 楊鐵永;通信衛(wèi)星電視轉(zhuǎn)播地面站的圖像質(zhì)量[J];上海航天;1987年03期
10 陳紹武;;印前圖像質(zhì)量的綜合控制[J];包裝工程;2007年08期
相關(guān)會議論文 前10條
1 齊麗萍;李英;唐磊;李艷玲;李曉婷;崔涌;孫應(yīng)實(shí);張曉鵬;;對同一組病人采用適應(yīng)性統(tǒng)計迭代算法重建的胸部CT劑量降低及圖像質(zhì)量的評價研究[A];中華醫(yī)學(xué)會第十八次全國放射學(xué)學(xué)術(shù)會議論文匯編[C];2011年
2 楊飛;蘇劍波;戴景文;;人臉識別中的人臉圖像質(zhì)量快速評價[A];第二十七屆中國控制會議論文集[C];2008年
3 張政;劉豐林;羅軍;;簡論一種工業(yè)CT圖像質(zhì)量的快速評價方法[A];2006年西南地區(qū)第九屆NDT學(xué)術(shù)年會暨2006年全國射線檢測新技術(shù)研討會論文集[C];2006年
4 朱松豪;羅青青;胡娟娟;;基于相關(guān)性與圖像質(zhì)量的圖像檢索算法[A];第25屆中國控制與決策會議論文集[C];2013年
5 陳紹武;;印前圖像質(zhì)量的綜合控制[A];第十一屆全國包裝工程學(xué)術(shù)會議論文集(一)[C];2007年
6 潘寧;李丹;曹霞;鄭春梅;;提高超聲圖像質(zhì)量的初探[A];第十二屆中國體視學(xué)與圖像分析學(xué)術(shù)會議論文集[C];2008年
7 饒德利;;兒童CT檢查的質(zhì)量控制探討[A];2009中華醫(yī)學(xué)會影像技術(shù)分會第十七次全國學(xué)術(shù)大會論文集[C];2009年
8 袁光華;;現(xiàn)代超聲圖像質(zhì)量與高新技術(shù)[A];首屆中國儀器儀表學(xué)會醫(yī)療儀器分會學(xué)術(shù)會議論文集[C];1993年
9 劉衛(wèi)東;鐘偉清;;影響DSA圖像質(zhì)量因素的臨床應(yīng)用探討[A];慶祝山東省醫(yī)學(xué)影像學(xué)研究所建所30周年學(xué)術(shù)論文?痆C];2005年
10 呂發(fā)金;張麗娟;謝惠;蔣孝先;;同步與非同步掃描對容積CT數(shù)字減影血管造影圖像質(zhì)量的影響[A];2010中華醫(yī)學(xué)會影像技術(shù)分會第十八次全國學(xué)術(shù)大會論文集[C];2010年
相關(guān)重要報紙文章 前10條
1 王駿;單純追求圖像質(zhì)量不可取[N];健康報;2007年
2 王駿;素面朝天看醫(yī)生[N];大眾衛(wèi)生報;2001年
3 賀群;印刷品質(zhì)量和印刷圖像質(zhì)量基本概念理解[N];中國包裝報;2009年
4 劉 暉;跨越圖像質(zhì)量的鴻溝[N];計算機(jī)世界;2003年
5 馬艷紅;小型CR系統(tǒng)在國內(nèi)首次“亮相”[N];中國醫(yī)藥報;2008年
6 鄭州人民醫(yī)院 王建坤;購置16層螺旋CT機(jī)應(yīng)注意的幾個問題[N];中國醫(yī)藥報;2009年
7 ;Cell REGZA是電視演變方向[N];中國電子報;2009年
8 浙江 ZHANG L;數(shù)字電影[N];電腦報;2002年
9 李雪墨;亞洲首臺寶石CT將“落戶”香港養(yǎng)和醫(yī)院[N];中國醫(yī)藥報;2008年
10 張楠;中置鏡頭易于散熱[N];中國計算機(jī)報;2008年
相關(guān)博士學(xué)位論文 前10條
1 王芳;光學(xué)遙感成像誤差建模與圖像質(zhì)量提升方法[D];國防科學(xué)技術(shù)大學(xué);2014年
2 崔光茫;光學(xué)遙感圖像質(zhì)量提升及評價技術(shù)研究[D];浙江大學(xué);2016年
3 高修峰;人臉圖像質(zhì)量評估標(biāo)準(zhǔn)方法研究[D];中國科學(xué)技術(shù)大學(xué);2008年
4 薛立勤;顯示圖像質(zhì)量定量評價方法及質(zhì)量控制研究[D];華中科技大學(xué);2007年
5 龐建新;圖像質(zhì)量客觀評價的研究[D];中國科學(xué)技術(shù)大學(xué);2008年
6 陳曉琳;基于視覺特征的圖像質(zhì)量評價技術(shù)研究[D];上海交通大學(xué);2012年
7 劉明娜;基于視覺系統(tǒng)和特征提取的圖像質(zhì)量客觀評價方法及應(yīng)用研究[D];上海交通大學(xué);2010年
8 王保云;圖像質(zhì)量客觀評價技術(shù)研究[D];中國科學(xué)技術(shù)大學(xué);2010年
9 姚偉;基于偏微分方程及變分理論的圖像質(zhì)量改善算法研究[D];國防科學(xué)技術(shù)大學(xué);2010年
10 孟遠(yuǎn)征;優(yōu)化微型CT圖像質(zhì)量的方法研究[D];華中科技大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 王鳳;雙源CT雙能量虛擬平掃在上腹部不同掃描時期的應(yīng)用研究[D];遵義醫(yī)學(xué)院;2015年
2 趙君祿;迭代重建技術(shù)在肝臟CT平掃中的應(yīng)用及最佳劑量研究[D];河北醫(yī)科大學(xué);2015年
3 張雪雁;乳腺專用CT劑量和圖像質(zhì)量的定量研究[D];蘭州大學(xué);2015年
4 尹雪梅;ASIR條件下低X線劑量聯(lián)合低濃度等滲對比劑在頭頸CTA應(yīng)用中的可行性研究[D];寧夏醫(yī)科大學(xué);2015年
5 潘曉龍;雙能量CT冠狀動脈造影低劑量技術(shù)的臨床應(yīng)用[D];昆明醫(yī)科大學(xué);2015年
6 康凱;基于結(jié)構(gòu)信息的視頻/圖像質(zhì)量客觀評估算法的研究[D];電子科技大學(xué);2015年
7 李玉;基于視覺信息保真度的圖像質(zhì)量評估的算法研究[D];電子科技大學(xué);2015年
8 劉瑩;雙源CT低kV掃描技術(shù)在肝臟增強(qiáng)中的應(yīng)用研究[D];北華大學(xué);2015年
9 潘丹;迭代模型重組設(shè)置對不同輻射劑量下肝臟增強(qiáng)CT圖像質(zhì)量的影響[D];南方醫(yī)科大學(xué);2015年
10 浦仁旺;自適應(yīng)統(tǒng)計迭代在低劑量CT中的應(yīng)用價值[D];大連理工大學(xué);2015年
,本文編號:2246028
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2246028.html