基于矢量量化的立體圖像分割及在MRI中的應(yīng)用
[Abstract]:Image segmentation is a key technology in image processing. In recent years, image segmentation technology has gradually developed towards stereo image processing, and the research on medical stereo image segmentation has become an important research direction. At present, in the research of stereo image segmentation, it is necessary to make full use of neighborhood structure information, determine the number of segmentation automatically, and extract and segment spatial features. The research on medical stereo image segmentation is still a challenging subject with important research significance and clinical application value. In this paper, the segmentation of medical MRI stereo image is deeply studied. The main research work is as follows: in this paper, the method of image segmentation based on vector quantization is studied. Using the vector quantization process to segment the image with local region (image sub-block) as the unit, a vector quantization method for image segmentation is proposed. The segmentation method not only aims at the gray level information of image pixels, but also utilizes the pixel neighborhood structure information, which accords with the cognition process of human vision to the outside information. In the process of realizing image subblock vector quantization, the codebook design is accomplished based on SOM neural network, and the optimal codebook size is obtained by using the method based on minimizing the ratio of intra-class dispersion to inter-class dispersion. According to this, the number of image segmentation is determined adaptively. A set of MRI stereo image segmentation method based on vector quantization is proposed for medical MRI stereo image segmentation. In this method, the spatial subblock of stereo image is taken as the basic unit, and vector quantization is applied to the segmentation of 3D data. According to the characteristics of MRI stereo image, the interlayer interpolation algorithm of stereo image and the edge pattern detection algorithm of space sub-block are designed, and two methods of hierarchical segmentation and global segmentation are designed in the process of obtaining quantization codebook by using SOM neural network. The vector quantization process is used to realize the adaptive stereo segmentation of the vector constructed by the space subblock. In practice, the proposed stereo image segmentation method is applied to the segmentation of human brain MRI stereo image. The simulation stereo image and the real stereo image in the IBSR image library and the BrainWeb image database are taken as the samples and the results are analyzed respectively. On the basis of stereo image range segmentation, a spatial segmentation method of stereo image is proposed by analyzing its spatial features. Firstly, by detecting the spatial connectivity of the stereo image, the connectedness of each spatial body in the three-dimensional space is obtained, and then the range segmentation results are further segmented. Then, by extracting the corresponding spatial geometric parameters of each spatial volume, the segmentation results are quantitatively described, and the final segmentation of the MRI stereo image is completed. Based on the range segmentation of human brain MRI stereo image, the validity of the proposed spatial segmentation method is verified, and the quantitative information of each part of the human brain and the spatial geometric parameters of the lesion changing with time are obtained. It is applied to clinical medical research and treatment.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 唐偉力;龍建忠;;一種基于降雨模型的圖像分割方法在礫巖圖像分割中的應(yīng)用[J];成都信息工程學(xué)院學(xué)報;2007年02期
2 黃曉莉;曾黃麟;王秀碧;劉永春;;基于脈沖耦合神經(jīng)網(wǎng)絡(luò)的圖像分割[J];信息技術(shù);2008年09期
3 肖飛;綦星光;;圖像分割方法綜述[J];可編程控制器與工廠自動化;2009年11期
4 汪一休;;一種交互式圖像分割的修正優(yōu)化方法[J];中國科學(xué)技術(shù)大學(xué)學(xué)報;2010年02期
5 李丹;;圖像分割方法及其應(yīng)用研究[J];科技信息;2010年36期
6 龔永義;黃輝;于繼明;關(guān)履泰;;基于熵的兩區(qū)域圖像分割[J];中國圖象圖形學(xué)報;2011年05期
7 張甫;李興來;陳佳君;;淺談圖像分割方法的研究運(yùn)用[J];科技創(chuàng)新與應(yīng)用;2012年04期
8 汪梅;何高明;賀杰;;常見圖像分割的技術(shù)分析與比較[J];計(jì)算機(jī)光盤軟件與應(yīng)用;2013年06期
9 魏慶;盧照敢;邵超;;基于復(fù)雜性指數(shù)的圖像分割必要性判別技術(shù)[J];計(jì)算機(jī)工程與應(yīng)用;2013年16期
10 陳曉丹;李思明;;圖像分割研究進(jìn)展[J];現(xiàn)代計(jì)算機(jī)(專業(yè)版);2013年33期
相關(guān)會議論文 前10條
1 楊魁;趙志剛;;圖像分割技術(shù)綜述[A];2008年中國高校通信類院系學(xué)術(shù)研討會論文集(下冊)[C];2009年
2 楊暄;郭成安;李建華;;改進(jìn)的脈沖耦合神經(jīng)網(wǎng)絡(luò)及其在圖像分割中的應(yīng)用[A];第十屆全國信號處理學(xué)術(shù)年會(CCSP-2001)論文集[C];2001年
3 楊生友;;圖像分割在醫(yī)學(xué)圖像中應(yīng)用現(xiàn)狀綜述[A];2009中華醫(yī)學(xué)會影像技術(shù)分會第十七次全國學(xué)術(shù)大會論文集[C];2009年
4 閆平昆;;基于模型的圖像分割技術(shù)及其醫(yī)學(xué)應(yīng)用[A];第十五屆全國圖象圖形學(xué)學(xué)術(shù)會議論文集[C];2010年
5 高嵐;胡友為;潘峰;盧凌;;基于小生境遺傳算法的SAR圖像分割[A];可持續(xù)發(fā)展的中國交通——2005全國博士生學(xué)術(shù)論壇(交通運(yùn)輸工程學(xué)科)論文集(下冊)[C];2005年
6 孫莉;張艷寧;胡伏原;趙榮椿;;基于Gaussian-Hermite矩的SAR圖像分割[A];第十三屆全國圖象圖形學(xué)學(xué)術(shù)會議論文集[C];2006年
7 李盛;;基于協(xié)同聚類的圖像分割[A];第十四屆全國圖象圖形學(xué)學(xué)術(shù)會議論文集[C];2008年
8 張利;許家佗;;舌象圖像分割技術(shù)的研究與應(yīng)用進(jìn)展[A];中華中醫(yī)藥學(xué)會中醫(yī)診斷學(xué)分會第十次學(xué)術(shù)研討會論文集[C];2009年
9 秦昆;李振宇;李輝;李德毅;;基于云模型和格網(wǎng)劃分的圖像分割方法[A];《測繪通報》測繪科學(xué)前沿技術(shù)論壇摘要集[C];2008年
10 高惠琳;竇麗華;陳文頡;謝剛;;圖像分割技術(shù)在醫(yī)學(xué)CT中的應(yīng)用[A];中國自動化學(xué)會控制理論專業(yè)委員會A卷[C];2011年
相關(guān)博士學(xué)位論文 前10條
1 白雪飛;基于視覺顯著性的圖像分割方法研究[D];山西大學(xué);2014年
2 黃萬里;基于高分衛(wèi)星數(shù)據(jù)多尺度圖像分割方法的天山森林小班邊界提取研究[D];福建師范大學(xué);2015年
3 王輝;圖像分割的最優(yōu)化和水平集方法研究[D];電子科技大學(xué);2014年
4 高婧婧;腦部MR圖像分割理論研究[D];電子科技大學(xué);2014年
5 潘改;偏微分方程在圖像分割中的應(yīng)用研究[D];東北大學(xué);2013年
6 馮籍瀾;高分辨率SAR圖像分割與分類方法研究[D];電子科技大學(xué);2015年
7 李偉斌;圖像分割中的變分模型與快速算法研究[D];國防科學(xué)技術(shù)大學(xué);2014年
8 鄧曉政;基于免疫克隆選擇優(yōu)化和譜聚類的復(fù)雜圖像分割[D];西安電子科技大學(xué);2014年
9 帥永e,
本文編號:2243885
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2243885.html