陣列測向的稀疏超分辨方法研究
[Abstract]:In the modern complex space electromagnetic environment, the radiator signal is highly dense, the target is moving at high speed, "short, hop, hidden" signals appear in large numbers, as an important part of electronic reconnaissance and electronic countermeasures, radio direction finding and positioning has encountered unprecedented difficulties and challenges. In this paper, a direction finding model is constructed and a sparse reconstruction algorithm is designed. A new method of sparse super-resolution array direction finding and azimuth tracking is proposed. Firstly, the reconfigurable condition of?_1-analysis sparse reconstruction is studied based on?-constraint equidistant property. The isometric property essentially requires that the measurement matrix has very little correlation. In this paper, a compact upper bound of the isometric constraint constant is given, which relaxes the correlation condition of the measurement matrix, and provides a theoretical guarantee for the application of the?_1-analysis sparse reconstruction to practical problems. Secondly, the array received signals in low SNR environment are proposed. In the case of low signal-to-noise ratio, the traditional spatial spectrum estimation method and sparse direction finding method based on compressed sensing theory have poor anti-noise performance. In this paper, a?_1-anaylsis reconstruction model for array received signal recovery is established, which proves that the manifold matrix in the array received model satisfies?_1-anaylsis sparse. The sparse reconstruction condition guarantees the rationality of applying?_1-analysis sparse reconstruction to recover the received signal of array in low SNR environment theoretically. Finally, the theoretical upper bound of the signal recovery error is deduced. Experiments show that this method has significant effect on improving the direction finding performance in low SNR environment. The sparse array direction finding method based on signal subspace and signal structure information is a sparse array direction finding method. Most of the sparse direction finding methods take the received array data or its covariance matrix as the observation data in the sparse reconstruction model. The accuracy of direction finding is not ideal. To solve this problem, this paper proposes the sparse array direction finding method based on signal subspace. The sparse representation of the signal subspace is constructed, and the sparse reconstruction model for recovering the energy of the emitter signal is established and converted into a second-order cone programming problem. Sparse Bayesian method, which combines spatial mesh refinement strategy, alleviates to a certain extent the problem of grid mismatch and sparse representation model error caused by spatial discretization in most sparse direction finding methods, and further improves the performance of direction finding. Thirdly, a continuous-domain array is proposed. Sparse super-resolution method for direction finding. Sparse direction finding method based on spatial discretization is limited by grid mismatch effect and sparse representation model error. To solve this problem, this paper uses single snapshot data to realize sparse super-resolution direction finding in continuous domain based on Meshless compressed sensing theory, and gives the method to realize super-resolution direction finding. In order to solve the problem that the minimum angle distance and the minimum number of array elements are required to satisfy the resolution of direction finding, which is limited by the minimum angle distance and the number of array elements between adjacent sources and can only use a single snapshot data, this paper proposes that the performance of the method is limited by using arbitrary snapshot data to achieve continuous space. Sparse super-resolution method for array direction finding. Finally, a method of DOA tracking for moving objects based on compressed robust principal component analysis is proposed. At present, there is little research on DOA tracking for moving objects. In this paper, the problem of DOA tracking can be transformed into a low rank matrix and sparse by using compressed robust principal component analysis theory. The linear alternating direction method is designed to solve the problem of matrix recovery. The fixed target signal matrix and the moving target signal matrix are recovered from the array receiving data, and the DOA estimation of the fixed target is further determined according to the recovered signal matrix to track the direction of arrival of the moving target.
【學(xué)位授予單位】:國防科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TN911.7
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 司偉建;崔冬槐;司錫才;;陣列測向多值模糊問題研究[J];彈箭與制導(dǎo)學(xué)報;2004年S8期
2 高昭昭;李世文;張曉蕓;;基于分布式稀疏理論的高分辨陣列測向[J];電子信息對抗技術(shù);2013年05期
3 羅朗;;高分辨陣列測向中信號相關(guān)性問題的研究[J];實驗科學(xué)與技術(shù);2006年02期
4 陳超;蔡科;梁劍;;單通道陣列測向系統(tǒng)的設(shè)計與實現(xiàn)[J];艦船電子對抗;2007年06期
5 毛健,郭振民;高分辨陣列測向的最小二乘自校正算法[J];聲學(xué)與電子工程;1995年04期
6 屈金佑;游志剛;張劍云;;基于相位補(bǔ)償?shù)膯瓮ǖ澜邮贞嚵袦y向方法[J];現(xiàn)代防御技術(shù);2007年05期
7 施龍飛;王偉;趙研;任季中;顧明超;;基于徑向?qū)ΨQ二元陣的非同向陣列測向方法[J];宇航學(xué)報;2013年04期
8 毛健;葛利嘉;陳天麒;;高分辨陣列測向的全局優(yōu)化自校正算法[J];電子科技大學(xué)學(xué)報;1993年05期
9 陳悅龍;;高分辨陣列測向技術(shù)及其仿真[J];四川職業(yè)技術(shù)學(xué)院學(xué)報;2014年02期
10 劉章孟;周一宇;吳海斌;;非圓信號的貝葉斯稀疏重構(gòu)陣列測向方法[J];航空學(xué)報;2014年03期
相關(guān)會議論文 前1條
1 司偉建;;相關(guān)輻射源特性及產(chǎn)生方法研究[A];中國造船工程學(xué)會電子技術(shù)學(xué)術(shù)委員會2006學(xué)術(shù)年會論文集(下冊)[C];2006年
相關(guān)博士學(xué)位論文 前3條
1 林波;陣列測向的稀疏超分辨方法研究[D];國防科學(xué)技術(shù)大學(xué);2016年
2 柳艾飛;陣列測向與陣列校正技術(shù)研究[D];西安電子科技大學(xué);2012年
3 呂澤均;高分辨陣列測向技術(shù)研究[D];電子科技大學(xué);2003年
相關(guān)碩士學(xué)位論文 前8條
1 唐愛華;輻射源高分辨陣列測向技術(shù)研究[D];哈爾濱工程大學(xué);2005年
2 顏杰;陣列測向系統(tǒng)校正技術(shù)研究[D];電子科技大學(xué);2009年
3 孔琦;陣列測向誤差分析及校正技術(shù)的研究[D];哈爾濱工程大學(xué);2011年
4 侯文棟;高分辨陣列測向技術(shù)研究[D];電子科技大學(xué);2008年
5 劉劍;陣列測向技術(shù)應(yīng)用研究[D];西安電子科技大學(xué);2012年
6 董李梅;低信噪比信號的陣列測向技術(shù)研究[D];哈爾濱工程大學(xué);2007年
7 房琪;基于分?jǐn)?shù)階Fourier變換的LFM類信號的DOA估計[D];蘭州交通大學(xué);2013年
8 王國謙;高分辨DBF測向算法研究[D];哈爾濱工業(yè)大學(xué);2010年
,本文編號:2238095
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2238095.html