非線性系統(tǒng)迭代學習控制算法研究
[Abstract]:In theory, iterative learning control can completely eliminate the repeatable error of the controlled system and achieve perfect tracking of the ideal output trajectory, but there are some problems in the application process of iterative learning control algorithm. However, iterative learning control can't do anything about these non-repetitive errors. As the number of iterations increases, the non-repetitive errors will continue to superimpose. When the accumulation of non-repetitive errors reaches a certain degree, the transient response fluctuation of the controlled system will become very large, even beyond the scope of the controlled system. This phenomenon is very great. Secondly, Iterative Learning Control (ILC) algorithm needs to satisfy certain conditions to completely eliminate the repetitive error of the controlled system. For example, the initial value problem requires the initial state of the controlled system to be on the desired trajectory, and the initial error to be zero. Convergence problem. For a nonlinear controlled system, in order to ensure that the control input of the control system converges to the ideal control input, the existence of the ideal control input is always assumed in advance, and the Lipschiz continuous condition is required for the controlled system. These assumptions greatly limit the application scope of the iterative learning control algorithm. In this paper, predictive control technology and iterative learning control technology are combined to construct a new control strategy to deal with these non-repetitive errors in nonlinear systems. The main research contents and innovations are as follows: Aiming at the problem of non-repetitive error in iterative learning control for nonlinear systems which do not satisfy Lipschiz continuous conditions, a new iterative learning control scheme is constructed by using operator theory in inner product space to realize the convergence of learning control for these nonlinear systems. The strategy of combining learning control technique with predictive control technique is applied to compensate the repetitive error and non-repetitive error of the system.Because the continuous nonlinear system can be discretized,the control strategy in this paper is designed for the discrete system.Because the iterative learning control law is designed offline,the prediction is mainly considered in this paper. Suppose that the controlled system has several sampling points in each repetitive operation, and different learning control laws are implemented at each sampling point. The difference of these control laws lies in the difference of output errors, which are obtained by implementing predictive control at each sampling point. The convergence and stability of an iterative predictive control algorithm are proved. To solve the problem that the classical nonlinear iterative learning control requires the controlled system to satisfy Lipschiz continuous conditions, a new iterative learning control law, also called two-step iterative learning control, is proposed. The convergence is achieved under the condition of Lipschiz continuity, which greatly expands the application scope of iterative learning control. In iterative learning control, the output of the system needs to be measured, and the output error of the controlled system is obtained by making a difference with the ideal output to update the control input. In this paper, a predictive variable gain iterative learning control strategy is proposed to eliminate the negative effects caused by measurement errors. This method is applied to permanent magnet synchronous motor (PMSM) systems to eliminate torque ripple. Learning control strategies are proposed in finite-dimensional space, and few iterative learning control methods are proposed for infinite-dimensional space. Moreover, the proposed iterative learning control algorithm assumes that the ideal control input exists in advance, but in practice, we do not know whether the ideal control input exists. Iterative learning control method is put forward, and the method of judging the existence of ideal control input is given, which greatly reduces the subjectivity of control input and enriches and develops the theory of iterative learning control. First, the discretization model of the controlled system is obtained according to the Euler formula, then the discretization model of the tracking error is deduced. The repeatable disturbance is eliminated by the error model, the current state value is estimated by Kalman filter, the random error is eliminated by prediction, and the ideal target is completely tracked. The predictive control method has a large amount of calculation. Combining with the problem that modular multilevel converter makes the on-line computation more difficult, the optimal grouping method is deduced to solve the optimal value of the objective function in predictive control according to the mean inequality, and the optimal grouping method is extended to the multi-level optimal method to solve the optimal value problem of predictive control. It reduces the operation of predictive control online operation and improves the control performance of the system.
【學位授予單位】:華北電力大學(北京)
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TP13
【相似文獻】
相關期刊論文 前10條
1 高紅霞,阮小娥,萬百五;工業(yè)過程控制系統(tǒng)迭代學習算法的增益確定[J];西安交通大學學報;2001年12期
2 田森平,謝勝利,謝振東;一類基于幾何分析的迭代學習控制算法[J];控制與決策;2004年09期
3 張君海;石成英;林輝;;一種帶角度修正的迭代學習控制算法[J];系統(tǒng)仿真學報;2006年S2期
4 回立川;林輝;;基于迭代學習的云控制設計研究及應用[J];計算機工程與應用;2008年09期
5 回立川;林輝;;一種新型的迭代學習控制器設計研究[J];計算機仿真;2009年03期
6 田紹寬;李書臣;翟春艷;顧妍午;;基于幾何分析的改進迭代學習控制算法[J];桂林電子科技大學學報;2007年06期
7 李戰(zhàn)明;艾文歡;陳若珠;;倒立擺的迭代學習控制方法研究[J];傳感器與微系統(tǒng);2008年04期
8 張麗萍;楊富文;;一類離散模糊系統(tǒng)的迭代學習控制算法[J];控制工程;2008年05期
9 殷紅;彭珍瑞;;倒立擺的可變增益迭代學習控制算法[J];自動化與儀器儀表;2009年03期
10 徐敏;林輝;;一種新型迭代學習控制律的研究與應用[J];南昌大學學報(理科版);2009年06期
相關會議論文 前10條
1 張君海;石成英;林輝;;一種帶角度修正的迭代學習控制算法[A];中國系統(tǒng)仿真學會第五次全國會員代表大會暨2006年全國學術年會論文集[C];2006年
2 李政;;一類二階D型迭代學習控制算法的收斂性[A];第二十四屆中國控制會議論文集(上冊)[C];2005年
3 路林吉;邵世煌;;一種可用于非線性動態(tài)延遲控制系統(tǒng)的閉環(huán)比例型一階給定超前迭代學習控制算法[A];1997年中國控制會議論文集[C];1997年
4 路林吉;邵世煌;;一種可用于非線性動態(tài)延遲控制系統(tǒng)的開環(huán)比例型一階給定超前迭代學習控制算法[A];1997中國控制與決策學術年會論文集[C];1997年
5 田森平;謝勝利;;一種新的帶有遺忘因子的迭代學習控制算法[A];第二十二屆中國控制會議論文集(上)[C];2003年
6 龔利;王云寬;楊雁;宋英華;;基于迭代學習算法的粉末精密配給控制系統(tǒng)[A];2007年中國智能自動化會議論文集[C];2007年
7 簡林柯;何鉞;;參考輸入信號的迭代學習生成及其應用[A];1998年中國控制會議論文集[C];1998年
8 翟春艷;薛定宇;李書臣;;一種基于過程模型的適應性迭代學習控制算法[A];Proceedings of 2010 Chinese Control and Decision Conference[C];2010年
9 路林吉;王樹青;;一種基于輸出誤差的離散時間動態(tài)系統(tǒng)迭代學習控制算法[A];1995年中國控制會議論文集(下)[C];1995年
10 謝華英;孫明軒;金奎;;有限時間收斂迭代學習控制器設計[A];第二十九屆中國控制會議論文集[C];2010年
相關博士學位論文 前10條
1 丁健;若干類魯棒迭代學習控制算法研究[D];江南大學;2015年
2 嚴求真;非線性不確定系統(tǒng)迭代學習控制方法研究[D];浙江工業(yè)大學;2015年
3 童少偉;高層建筑結構智能振動控制與優(yōu)化研究[D];西南交通大學;2016年
4 李振軒;高速列車迭代學習運行控制幾類問題研究[D];北京交通大學;2016年
5 許慧敏;非線性系統(tǒng)迭代學習控制算法研究[D];華北電力大學(北京);2016年
6 許光偉;基于優(yōu)化策略的迭代學習控制算法研究[D];大連理工大學;2014年
7 劉山;迭代學習控制系統(tǒng)設計及應用[D];浙江大學;2002年
8 孫何青;改進的迭代學習控制算法及其在列車運行控制應用中的幾類問題研究[D];北京交通大學;2014年
9 郭毓;一類時變系統(tǒng)的自適應迭代學習辨識與控制[D];南京理工大學;2007年
10 于少娟;電液伺服力控系統(tǒng)的魯棒迭代學習控制方法研究[D];太原理工大學;2012年
相關碩士學位論文 前10條
1 孫宇;基于大數(shù)據(jù)的高速列車車體振動迭代學習主動控制研究[D];西南交通大學;2015年
2 席珂;迭代學習模型預測控制的研究[D];華北電力大學;2015年
3 趙思鋒;基于PWM迭代學習的SRM電流控制器研究[D];河北工業(yè)大學;2015年
4 王敏;復雜動態(tài)網的自適應迭代學習同步控制[D];西安電子科技大學;2014年
5 易芬;伺服系統(tǒng)的分段濾波迭代學習控制方法研究[D];浙江工業(yè)大學;2015年
6 李妮;基于二維系統(tǒng)的迭代學習控制算法[D];浙江工業(yè)大學;2015年
7 栗三一;基于迭代學習的橋式起重機定位與防擺控制研究[D];河南理工大學;2014年
8 陳強;自適應迭代學習控制算法及應用研究[D];重慶大學;2015年
9 易家寧;風洞馬赫數(shù)的控制策略與控制方法研究[D];東北大學;2014年
10 陳磊;基于迭代學習算法的靈巧手同步協(xié)調控制[D];華中科技大學;2014年
,本文編號:2232381
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2232381.html