機載SAR快速后向投影成像算法研究
[Abstract]:Synthetic Aperture Radar (SAR) imaging technology has the characteristics of all-weather, all-time, long-range, high-resolution, wide-area observation, which can effectively improve the radar information acquisition capability. It is widely used in civil areas such as land monitoring, ocean observation, sea ice monitoring and landform changes, as well as in the battlefield reconnaissance, military trend monitoring and other military areas. With the development of SAR technology, SAR is moving towards the direction of more flexible beam pointing, higher resolution and larger scene coverage, so it is important to obtain the surface information accurately. At the same time, each mode of operation can derive two geometric configurations: forward-sidelook and squint. Under different working modes and geometric configurations, the data acquisition mode and echo signal form are quite different, so it is necessary to study new imaging algorithms to meet the needs of different working modes. The main work of this paper is as follows: Chapter 2 is the basic theory of this paper, and introduces the current situation of the research. Several typical SAR imaging algorithms are discussed, and the imaging principle, key techniques, advantages and disadvantages of each algorithm are discussed. According to the characteristics of wavenumber support region, two resampling methods for strabismus spotlight SAR polar coordinate processing, namely LOSPI and SSPI, are introduced in the second chapter. It should be pointed out that PFA is not only tenacious, but also widely used in high resolution spotlight SAR, CSAR and video SAR. The imaging characteristics of range-Doppler focusing and LOSPI provide a reference for the self-focusing processing based on fast time-domain algorithm in Chapter 3. FBP algorithm and FFBP algorithm are used to discuss the dependence of image quality on the real APC position and terrain fluctuation. In practice, most motion errors can be corrected according to the platform motion information recorded by GPS/INS. Because of the influence of image focusing, it is necessary to develop a fast time-domain algorithm based on image or data self-focusing processing. In chapter 3, the FFBP algorithm is improved. Firstly, LOS virtual polar coordinate grid is selected to replace the polar coordinate grid in the original FFBP algorithm. Second, the overlapping sub-aperture configuration (OSF) is constructed by using the multi-aperture structure of FFBP algorithm. OSF is the link between the sub-aperture phase error and the full-aperture phase error function, thus realizing the phase-based phase error. The FFBP algorithm uses two-dimensional interpolation to realize the recursive fusion of images. However, interpolation inevitably produces interpolation errors, resulting in the loss of image quality. To solve this problem, the fourth chapter proposes an accelerated backward projection spotlight SAR imaging algorithm based on wavenumber spectrum fusion, namely EBP algorithm. The EBP algorithm innovatively projectes the sub-aperture data back to the global polar coordinate system to ensure that all the sub-image wavenumber spectra are in the same wavenumber space. Without two-dimensional interpolation and recursive fusion, the EBP algorithm can obtain the full-aperture wavenumber spectra only by the azimuth shift of the sub-image wavenumber spectra. Formal, avoiding the side effects of two-dimensional interpolation processing, has the accuracy of the time-domain algorithm, and fast Fourier transform (FFT) and cyclic shift operation make it both efficient. Experiments show that the EBP algorithm is superior to the FFBP algorithm in image quality and operational efficiency. FFBP algorithm has achieved great success in the field of spotlight SAR, but will be used in the future. Enlightened by Chapter 4, Chapter 5 reorganizes FFBP algorithm from the perspective of wavenumber spectrum and finds out the reasons why FFBP algorithm is difficult to be directly used in strip SAR processing: first, integral aperture; second, the heavy computational burden caused by angular domain rising sampling. In the fifth chapter, the overlapping image method is proposed and the stripe SAR processing based on FFBP algorithm is realized successfully. This method does not need angle-domain up-sampling and greatly retains the advantages of FFBP algorithm in operation efficiency. It has the characteristics of first spotlight processing and then spotlight-stripe processing. Finally, the feasibility and validity of overlapped images are verified by simulation experiments and real-time data processing. So far, different imaging modes in linear aperture can be implemented by fast time-domain algorithm. The previous chapters have realized the extended application of fast time-domain algorithm in linear aperture. Chapter 6 is aimed at the sixth chapter. In order to avoid high angle-domain sampling rate, the CEBP algorithm divides the whole synthetic aperture (360 degree observation) into eight processing apertures. Each processing aperture is decomposed separately, sub-image is formed and wavenumber spectrum is fused. The processing aperture map is obtained by two-dimensional inverse Fourier transform (IFFT). Image. Eight processed aperture images are added coherently in rectangular coordinates to obtain the final focused CSAR image. CEBP algorithm inherits the advantages of EBP algorithm, which is accurate and efficient, and has the ability to provide about a quarter of the resolution.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TN957.52
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 屈樂樂;黃瓊;方廣有;;基于壓縮感知的頻率步進(jìn)探地雷達(dá)成像算法[J];系統(tǒng)工程與電子技術(shù);2010年02期
2 劉繼幫;韓松;;基于距離走動校正的星載SAR成像算法[J];電子與信息學(xué)報;2008年02期
3 朱宇濤;向家彬;;一種基于時頻分析的自適應(yīng)積累成像算法[J];空軍雷達(dá)學(xué)院學(xué)報;2006年02期
4 孫泓波,顧紅,蘇衛(wèi)民,劉國歲;機載合成孔徑雷達(dá)成像算法研究[J];系統(tǒng)工程與電子技術(shù);2001年09期
5 何勁;實時成像算法在某8mm高分辨機載SAR中的應(yīng)用[J];電訊技術(shù);2004年04期
6 雷文太;粟毅;黃春琳;;表層穿透雷達(dá)遞歸反向投影成像算法[J];電子學(xué)報;2005年12期
7 孫兵;周蔭清;陳杰;李春升;;基于恒加速度模型的斜視SAR成像CA-ECS算法[J];電子學(xué)報;2006年09期
8 白霞;袁運能;孫進(jìn)平;毛士藝;;0.1米分辨率機載SAR系統(tǒng)的帶寬實現(xiàn)和成像算法研究[J];電子學(xué)報;2007年09期
9 李述為;高梅國;傅雄軍;;步進(jìn)頻穿墻雷達(dá)成像算法[J];現(xiàn)代雷達(dá);2007年12期
10 介利軍;歐陽繕;楊潔;陳玉生;;一種穿墻雷達(dá)成像算法的快速實現(xiàn)方法[J];電路與系統(tǒng)學(xué)報;2011年04期
相關(guān)會議論文 前10條
1 王文遠(yuǎn);;貝頁斯層析成像算法在密度反演中的應(yīng)用[A];中國工程物理研究院科技年報(2003)[C];2003年
2 鄧黽;吳彥鴻;;雙站合成孔徑雷達(dá)ωk成像算法研究[A];全國第五屆信號和智能信息處理與應(yīng)用學(xué)術(shù)會議?(第一冊)[C];2011年
3 馬進(jìn);許會;;微波成像算法綜述[A];科技創(chuàng)新與產(chǎn)業(yè)發(fā)展(A卷)——第七屆沈陽科學(xué)學(xué)術(shù)年會暨渾南高新技術(shù)產(chǎn)業(yè)發(fā)展論壇文集[C];2010年
4 張云;趙昕;姜義成;;艦船目標(biāo)的分?jǐn)?shù)階自相關(guān)瞬時成像算法研究[A];全國第二屆信號處理與應(yīng)用學(xué)術(shù)會議?痆C];2008年
5 趙滿慶;賈鑫;;一端固定的雙站SAR成像算法研究[A];第三屆全國嵌入式技術(shù)和信息處理聯(lián)合學(xué)術(shù)會議論文集[C];2009年
6 黃曉芳;馬侖;劉崢;;基于最小熵準(zhǔn)則的彈載SAR成像算法[A];第十二屆全國信號處理學(xué)術(shù)年會(CCSP-2005)論文集[C];2005年
7 劉愛芳;朱曉華;劉中;;基于分?jǐn)?shù)階Fourier變換的距離瞬時多普勒成像算法[A];現(xiàn)代通信理論與信號處理進(jìn)展——2003年通信理論與信號處理年會論文集[C];2003年
8 白霞;孫進(jìn)平;毛士藝;;雙基地合成孔徑雷達(dá)的Chirp z變換成像算法[A];第十三屆全國信號處理學(xué)術(shù)年會(CCSP-2007)論文集[C];2007年
9 陳靜;楊萬麟;;機載雙基地SAR的R-D成像算法[A];2006中國西部青年通信學(xué)術(shù)會議論文集[C];2006年
10 陳浩;吳仁彪;劉家學(xué);韓智勇;;基于NUFFT的探地雷達(dá)偏移成像算法[A];第十四屆全國信號處理學(xué)術(shù)年會(CCSP-2009)論文集[C];2009年
相關(guān)博士學(xué)位論文 前10條
1 楊軍;機/星載寬幅SAR成像算法研究[D];西安電子科技大學(xué);2014年
2 李浩林;機載SAR快速后向投影成像算法研究[D];西安電子科技大學(xué);2015年
3 劉光平;超寬帶合成孔徑雷達(dá)高效成像算法[D];中國人民解放軍國防科學(xué)技術(shù)大學(xué);2003年
4 任百玲;主動毫米波安檢成像算法及系統(tǒng)研究[D];北京理工大學(xué);2014年
5 鐘華;雙站合成孔徑雷達(dá)成像算法研究[D];上海交通大學(xué);2009年
6 劉玉春;雙基雷達(dá)成像算法研究[D];西安電子科技大學(xué);2013年
7 左艷軍;分布式小衛(wèi)星合成孔徑雷達(dá)高分辨率成像算法研究[D];中國科學(xué)院研究生院(電子學(xué)研究所);2007年
8 張振華;雙/多基SAR成像算法研究[D];西安電子科技大學(xué);2007年
9 陳士超;同軌雙基SAR成像算法研究[D];西安電子科技大學(xué);2014年
10 金麗花;斜視聚束合成孔徑雷達(dá)成像算法研究[D];上海交通大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 王照法;THz頻段SAR成像算法研究[D];哈爾濱工業(yè)大學(xué);2015年
2 張謙;前視雙基地SAR成像算法及運動補償研究[D];電子科技大學(xué);2015年
3 劉志明;基于子空間優(yōu)化方法的非線性電磁場逆成像算法研究[D];南昌大學(xué);2015年
4 陳紅寰;基于二維頻譜的雙站SAR成像技術(shù)研究[D];電子科技大學(xué);2014年
5 殷文昭;合成孔徑雷達(dá)成像算法的并行優(yōu)化與實現(xiàn)[D];電子科技大學(xué);2015年
6 劉嬋;雙基地前視SAR頻域成像算法研究[D];電子科技大學(xué);2015年
7 李志希;建筑物透視探測場景成像算法研究[D];電子科技大學(xué);2014年
8 梅治浩;彈載SAR大斜視角成像算法研究[D];電子科技大學(xué);2014年
9 班陽陽;基于后向投影的SAR成像算法與GPU加速研究[D];南京航空航天大學(xué);2014年
10 張帆;彈載合成孔徑雷達(dá)多模式成像技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2013年
,本文編號:2230657
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2230657.html