基于信道響應(yīng)的室內(nèi)設(shè)備無關(guān)被動(dòng)人體定位研究
[Abstract]:With the rapid development of the Internet of Things, wireless location has become one of the emerging technologies, which can help intelligent systems to implement location-based intelligent services. Compared with traditional active location, the new wireless device-independent passive location can be used to locate users without any related electronic devices and to locate, even identify users. Recognition, the technology can be widely used in factories, home safety protection, equipment protection, personnel management and other fields. Because of its coarse-grained nature, the traditional wireless signal strength in indoor environment can not accurately perceive the presence of human body under the influence of indoor multipath effect, resulting in indoor equipment independent passive positioning. Nowadays, WLAN technology is developing rapidly. The OFDM technology used in IEEE802.11 a/g/n protocol provides fine-grained channel response information at carrier level for wireless location. Channel response includes channel state information at multi-carrier level and can describe indoor environment. Multipath propagation characteristics provide a new opportunity for the development of fine-grained and high-precision indoor device-independent passive positioning. Currently, the research on channel response-based device-independent passive positioning is still in its infancy in the world, and a large number of basic problems remain unsolved, including the use of multi-carrier channel state information for indoor equipment. Efficiency, stability and efficiency in the field of independent passive location. This paper explores the use of fine-grained multi-carrier channel state information to obtain advanced indoor device-independent passive location technology, and promotes the development of wireless indoor device-independent passive location technology in China. In order to reduce the cost of equipment-independent passive human body detection and improve the universal applicability of equipment-independent passive human body detection, a large number of comparative experiments are carried out in this paper, and amplitude response information is proposed to quantify the mobile of wireless link to human body. A lightweight device-independent passive human body detection model is constructed to realize adaptive device-independent passive human body detection and reduce the cost of field survey. Secondly, aiming at the low perception ability of amplitude response to indoor slow motion, a phase response-free device-independent passive human motion detection is proposed. After linear transformation of the original random phase information in the network card, the system extracts the available stable phase information. This paper develops a lightweight real-time device-independent passive human detection model based on time-domain phase variation coefficients, which can reduce the system survey overhead and improve the universality of device-independent passive human detection. Thirdly, the amplitude response information is used to quantify the radio perception ability of the receiver, which helps to select the position of the receiver with high perception. The fine-grained device-independent passive human body localization model based on S classification principle can improve the range and accuracy of indoor wireless device-independent passive localization and reduce the number of blind spots in the monitoring area. Finally, based on the difference and correlation of channel state information at different frequencies, a high-precision indoor device-independent passive location model is proposed. This paper makes full use of the frequency selective fading characteristic of channel response. Two novel passive human localization algorithms, weighted Bayesian localization and maximum similarity matrix localization, are studied under the condition of single link. Supervised learning technique is used to further improve the accuracy of passive human localization. Mean location error also reflects the stability and efficiency of channel response in device independent passive location.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN92
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 歸琳,韓雁,鄒志永,吳稟圣,仇佩亮;快速信道響應(yīng)估計(jì)算法及其應(yīng)用[J];電路與系統(tǒng)學(xué)報(bào);2001年04期
2 張福新,季建峰,樓建東;利用訓(xùn)練序列進(jìn)行無線信道響應(yīng)的低價(jià)估計(jì)[J];微計(jì)算機(jī)信息;2005年05期
3 楊曉東,牟松會(huì),楊日杰,趙俊渭;快速實(shí)現(xiàn)盲序列估計(jì)的一種新算法[J];電子科學(xué)學(xué)刊;2000年01期
4 黃勇;;基于信道響應(yīng)算法的OFDM多徑同步技術(shù)[J];通信技術(shù);2013年11期
5 高猛;崔桐;任曉亞;趙守俊;;LOFDM系統(tǒng)信道響應(yīng)和時(shí)延擴(kuò)展聯(lián)合估計(jì)[J];指揮信息系統(tǒng)與技術(shù);2013年05期
6 李金磊;李為;熊春林;王德剛;魏急波;;一種基于大數(shù)邏輯判決和信道響應(yīng)的HARQ算法[J];信號(hào)處理;2011年09期
7 孫林;吳相林;羅松濤;周莉;張紅艷;;基于人體檢測的網(wǎng)絡(luò)商品圖像分類算法[J];微計(jì)算機(jī)信息;2010年29期
8 丁建浩;耿衛(wèi)東;王毅剛;;基于多部位多示例學(xué)習(xí)的人體檢測[J];模式識(shí)別與人工智能;2012年05期
9 王敏;趙娜娜;劉忠杰;黃榜;宋小波;朱擎飛;;視頻中的人體檢測算法[J];自動(dòng)化博覽;2013年02期
10 孫宏國;李天然;蒲寶明;張全發(fā);王慧靜;;復(fù)雜背景下人體檢測算法[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2013年04期
相關(guān)會(huì)議論文 前4條
1 孫慶杰;;基于顏色量化的人體檢測[A];全國第十五屆計(jì)算機(jī)科學(xué)與技術(shù)應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2003年
2 龔華;李繼云;;運(yùn)動(dòng)人體檢測算法比較研究[A];第十四屆全國圖象圖形學(xué)學(xué)術(shù)會(huì)議論文集[C];2008年
3 顧爽;陳啟軍;;基于邊緣類型比率特征的人體檢測算法[A];2011年中國智能自動(dòng)化學(xué)術(shù)會(huì)議論文集(第一分冊(cè))[C];2011年
4 陳亞菲;張寶昌;;基于L2-norm最小化的人體檢測[A];第八屆全國信息獲取與處理學(xué)術(shù)會(huì)議論文集[C];2010年
相關(guān)重要報(bào)紙文章 前1條
1 成都 胥紹禹 編譯;人體檢測夜間自動(dòng)照明燈[N];電子報(bào);2007年
相關(guān)博士學(xué)位論文 前7條
1 宮良一;基于信道響應(yīng)的室內(nèi)設(shè)備無關(guān)被動(dòng)人體定位研究[D];哈爾濱工程大學(xué);2016年
2 林逸峰;基于計(jì)算機(jī)視覺的人體檢測和人臉識(shí)別[D];吉林大學(xué);2012年
3 劉亞洲;基于時(shí)空分析和多粒度特征表示的人體檢測方法研究[D];哈爾濱工業(yè)大學(xué);2009年
4 丁建浩;基于單目視覺的人體檢測和運(yùn)動(dòng)恢復(fù)[D];浙江大學(xué);2013年
5 李春明;視頻圖像中的運(yùn)動(dòng)人體檢測和人臉識(shí)別[D];西安電子科技大學(xué);2005年
6 倪洪印;基于視頻的人體檢測與目標(biāo)跟蹤方法研究[D];吉林大學(xué);2014年
7 于海濱;基于頭部特征提取的人體檢測與跟蹤及其應(yīng)用[D];浙江大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 姚河花;基于梯度方向直方圖的人體檢測算法的改進(jìn)[D];電子科技大學(xué);2014年
2 翟淵;基于電子巡考系統(tǒng)的缺考、代考預(yù)警研究[D];復(fù)旦大學(xué);2013年
3 吳亞順;基于視頻序列的運(yùn)動(dòng)人體檢測和跟蹤[D];西華大學(xué);2015年
4 武文靜;監(jiān)控視頻中的人體檢測與跟蹤算法研究[D];東南大學(xué);2015年
5 戴蕭何;基于RGB-D數(shù)據(jù)的人體檢測與跟蹤[D];浙江大學(xué);2016年
6 劉顯標(biāo);安防視頻中人體及人臉檢測的研究[D];昆明理工大學(xué);2016年
7 劉陽;視頻人體檢測方法研究[D];南京信息工程大學(xué);2016年
8 張恒瑜;基于卷積神經(jīng)網(wǎng)絡(luò)的多部位人體檢測[D];北京工業(yè)大學(xué);2016年
9 董志聰;超低空無人飛行器人體檢測算法研究[D];湖南大學(xué);2015年
10 周卓;人體再識(shí)別算法研究[D];東南大學(xué);2016年
,本文編號(hào):2226421
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2226421.html