時空特征提取方法研究
[Abstract]:Video content recognition is an important issue in computer vision, and related research can be used in intelligent video surveillance, human-computer interaction, video retrieval and other fields. Video feature expression is very important for video content recognition. It is difficult to extract good video features. In recent years, related research has made some progress, but there are still many difficulties, which can not be well applied to actual scenes. In this paper, the space-time feature extraction in video content recognition is studied from the aspects of recognition accuracy and recognition speed. The main work of this paper is as follows. 1. Slow feature analysis (SFA) extracts slowly changing signals from fast changing signals. The primary visual cortex provides information for ventral and dorsal pathways, respectively, for processing appearance and motion information. However, SFA is only used to extract slowly varying information in local feature extraction, which mainly represents static information. In order to make better use of temporal information, this paper extends SFA to time variance analysis (TVA). TVA learns a linear mapping function, which maps the original temporal information to the characteristic components with different temporal variations. Local receptive field is used to extract local features by convolution and pooling. In this paper, the method of feature extraction based on TVA is tested on four behavioral recognition databases. The experimental results show that both slow and fast features extracted by TVA can be effectively expressed and can be transmitted by comparison. Dynamic texture exists widely in different shapes, such as flame, smoke, traffic flow and so on. Because of the complex changes of dynamic texture video sequence, dynamic texture recognition becomes a challenging problem. This paper presents a dynamic texture recognition method based on slow feature analysis. Slow feature analysis can learn invariant features from complex dynamic textures. However, complex temporal variations require high-level semantic information to express features to achieve time invariance, which is difficult to be learned directly from high-dimensional video by slow feature analysis. We propose a manifold-based slow feature. MR-SFA: manifold regularized SFA (MR-SFA) learns a low semantic level local feature to describe a complex dynamic texture. MR-SFA constraints with similar initial state features also have similar changes in time. This method can learn a partially predictable slow change feature to cope with the complexity of dynamic texture. Experiments on dynamic texture recognition and scene recognition databases demonstrate the effectiveness of MR-SFA. 3. Traditional video feature extraction methods are too time-efficient for real-time or large-scale applications. In traditional compressed video, DCT (discrete cosine transform) coefficients encode the residual information between consecutive frames in the video, which is not available in the block directed by the motion vector. We propose a set of features called residual edge histograms to extract the features of the video using different parts of the DCT coefficients. On the other hand, we use the compression domain information of the depth map video, including DWT (discrete wavelet transform) coefficients and breakpoints. In this paper, a series of features for depth map video are extracted by using the two kinds of compressed domain information. The above feature extraction methods are validated in the behavior recognition database. The experimental results show that the proposed method is better than the traditional method. In summary, on the one hand, based on the analysis of video spatiotemporal information, this paper proposes a new spatiotemporal local feature extraction method to achieve better recognition accuracy; on the other hand, this paper starts from compressed domain information and directly from compressed video information. Spatio-temporal feature extraction in the message greatly improves the recognition speed while ensuring good recognition accuracy.
【學位授予單位】:華南理工大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TP391.41
【相似文獻】
相關期刊論文 前10條
1 馬少華,高峰,李敏,吳成東;神經網絡分類器的特征提取和優(yōu)選[J];基礎自動化;2000年06期
2 管聰慧,宣國榮;多類問題中的特征提取[J];計算機工程;2002年01期
3 胡威;李建華;陳波;;入侵檢測建模過程中特征提取最優(yōu)化評估[J];計算機工程;2006年12期
4 朱玉蓮;陳松燦;趙國安;;推廣的矩陣模式特征提取方法及其在人臉識別中的應用[J];小型微型計算機系統(tǒng);2007年04期
5 趙振勇;王保華;王力;崔磊;;人臉圖像的特征提取[J];計算機技術與發(fā)展;2007年05期
6 馮海亮;王麗;李見為;;一種新的用于人臉識別的特征提取方法[J];計算機科學;2009年06期
7 朱笑榮;楊德運;;基于入侵檢測的特征提取方法[J];計算機應用與軟件;2010年06期
8 王菲;白潔;;一種基于非線性特征提取的被動聲納目標識別方法研究[J];軟件導刊;2010年05期
9 陳偉;瞿曉;葛丁飛;;主觀引導特征提取法在光譜識別中的應用[J];科技通報;2011年04期
10 王華,李介谷;人臉斜視圖象的特征提取與恢復[J];上海交通大學學報;1997年01期
相關會議論文 前10條
1 尚修剛;蔣慰孫;;模糊特征提取新算法[A];1997中國控制與決策學術年會論文集[C];1997年
2 潘榮江;孟祥旭;楊承磊;王銳;;旋轉體的幾何特征提取方法[A];第一屆建立和諧人機環(huán)境聯合學術會議(HHME2005)論文集[C];2005年
3 薛燕;李建良;朱學芳;;人臉識別中特征提取的一種改進方法[A];第十三屆全國圖象圖形學學術會議論文集[C];2006年
4 杜栓平;曹正良;;時間—頻率域特征提取及其應用[A];2005年全國水聲學學術會議論文集[C];2005年
5 黃先鋒;韓傳久;陳旭;周劍軍;;運動目標的分割與特征提取[A];全國第二屆信號處理與應用學術會議?痆C];2008年
6 魏明果;;方言比較的特征提取與矩陣分析[A];2009系統(tǒng)仿真技術及其應用學術會議論文集[C];2009年
7 林土勝;賴聲禮;;視網膜血管特征提取的拆支跟蹤法[A];1999年中國神經網絡與信號處理學術會議論文集[C];1999年
8 秦建玲;李軍;;基于核的主成分分析的特征提取方法與樣本篩選[A];2005年中國機械工程學會年會論文集[C];2005年
9 劉紅;陳光,
本文編號:2224105
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2224105.html