量子點和金簇納米傳感器制備及在藥物檢測中的應用研究
[Abstract]:Nano-sensors are widely used in the fields of chemistry, food science, clinical diagnosis, environment and medicine because of their excellent optical properties and sensitivity. The selection of nano-materials is very important to the sensitivity, specificity and stability of the sensors. New nano-materials (quantum dots and Ginna) are used. Combining with sensors, nano-sensors with high specificity and sensitivity can be constructed for rapid detection of pesticide residues in environment, agricultural products and traditional Chinese medicines, and sensitive monitoring of clinical important drug molecules. It can not only promote the rapid development of nanotechnology in the history of human science and technology, but also open up new ideas for researchers. At present, there are many kinds of detection methods for pesticide paraquat, anticoagulant heparin, trypsin and folic acid, such as chromatography, electrochemical method and enzyme-linked immunosorbent assay, but these methods are easy to be interfered by other components of the actual sample, difficult to extract and analyze, or a variety of detection steps, detection time, etc. With the continuous improvement of human living standards and the deepening of scientific research, people gradually realize the importance of environmental safety, food safety and clinical drug safety to human health, so researchers urgently need to study. Preparation of nano-sensors with simple operation, rapid detection, low cost and good sensitivity for rapid detection of pesticide molecules, clinical important drug molecules and important protein molecules closely related to human health in order to meet the environmental, food safety assessment and clinical drug safety guidelines, thus for China's agricultural products and pharmaceutical industry The rapid and safe development and the trend of internationalization have laid a good foundation for clinical medicine and rapid diagnosis of some diseases, and also provide a reliable evaluation index for human health and quality of life index. Considering the environmental problems, pesticide residues in agricultural products and raw medicines, clinical drug requirements and testing, a series of fluorescent nano-sensors were designed and assembled for the rapid detection and analysis of pesticide residues in environment, agricultural products and medicinal plants. Paraquat, clinical anticoagulants heparin, folic acid, and trypsin provide new ideas for the establishment of pesticide residue detection and clinical drug monitoring platforms. The following major advances have been made in this paper: In the first chapter, we reviewed the preparation of quantum dots and metal nanoclusters, and their applications in environmental and agricultural pollutants, protein analysis, bioimaging and other research areas. In the second chapter, in order to achieve rapid detection and screening of paraquat in the environment, agricultural products and medicinal plant samples, we use Cd S quantum dots with good optical properties as fluorescent nanomaterials to establish a simple and sensitive sensor for the detection of paraquat. The water-soluble Cd S quantum dots can be synthesized rapidly in 15 minutes by optimizing the synthesis conditions with glutathione as template and protectant. According to the characteristics of paraquat as cationic salt, the fluorescence of GSH-Cd S quantum dots can be quenched efficiently by electron transfer, and the fluorescence intensity of environmental and agricultural samples can be changed according to the fluorescence intensity. This method can be used to detect paraquat in the range of 0.025-1.50 UG m L-1. Compared with the traditional method, it does not need expensive enzymes or antibodies and other reagents. The cost is lower and the detection limit is lower (0.01 UG m L-1). This method is suitable for environment, agricultural products and Chinese herbal medicines. In Chapter 3, a novel fluorescent "quenching-recovery" nanosensor was constructed to effectively avoid the influence of protein and ion in blood on the real-time monitoring and detection of anticoagulant heparin. In this chapter, bovine serum albumin (BSA) was used as both a template and a protectant to prepare water-soluble BSA-Cd S quantum dots. The quantum dots interacted with gold nanoparticles Au NPs, resulting in significant quenching of BSA-Cd S fluorescence. Protamine could induce agglomeration of gold nanoparticles (Au NPs), resulting in absorption of Au NPs. Because heparin and protamine bind preferentially through electrostatic interaction, protamine is far away from gold nanoparticles, and the fluorescence internal filtration is strengthened, which leads to the fluorescence signal change again, so as to detect the content of heparin, and on this basis, the quantitative detection of the real protamine is carried out. Compared with the traditional method, this method can effectively shield the interference of common proteins, amino acids and cations in blood and detect the content of anticoagulant heparin rapidly. This method has high sensitivity. The detection limit is 10-300 ng m L-1 and the minimum detection limit is 2.2 ng m L-1. In the fourth chapter, we constructed a fluorescent gold cluster (GSH-Au NCs) to detect the trypsin content in human urine samples and provide a basis for the diagnosis of pancreatic diseases. A simple, sensitive and unmarked fluorescent nanosensor was developed for the rapid detection of trypsin. In this chapter, the fluorescence of cytochrome C was effectively quenched by contact with gold nanoclusters due to the strong electron absorption of cytochrome C. When trypsin was present in the system, trypsin could catalyze the hydrolysis of cytochrome. C (Cyt C), resulting in fluorescence recovery. Therefore, the fluorescence intensity of the system changes to quickly test the activity of trypsin. This method has good selectivity and anti-interference ability, and fast and simple, detection linear range is 0.001-0.2 mg m L-1, the minimum detection limit is 0.3 UG m L-1, can be used for the actual urine samples of trypsin content. In the fifth chapter, we constructed a novel, selective and label-free gold nanoparticles (cyst-Au NPs) and gold nanoclusters (BSA-Au NCs) for the safe and effective detection of folic acid, an important substance affecting fetal development. Folic acid nanosensors. Based on the principle that gold nanoparticles quench the fluorescence of gold clusters by surface plasmon resonance energy transfer, folic acid can induce the agglomeration of gold nanoparticles and cause the red shift of their ultraviolet absorption peaks, resulting in the formation of gold nanoparticles (cyst-Au NPs) and gold nanoclusters (BSA-Au NCs). This scheme not only has good selectivity, but also has the function of absorbance and fluorescence dual-signal output. On the one hand, it can detect folic acid semi-quantitatively by changing the color of the solution. More importantly, it can detect folic acid semi-quantitatively by changing the color of the solution. The fluorescence method can accurately determine the content of folic acid in blood. The linear range of the method is 0.11-2.27 micromol L-1 and the minimum detection limit is 0.065 micromol L-1. In this paper, a series of important quantum dots or gold cluster nano-sensors for identifying different target drugs are designed and fabricated. The application of this kind of sensor will shorten the detection time, improve the detection sensitivity, reduce the detection cost and achieve the target in complex samples. The detection of the specificity of the substance has potential application value, which not only provides a feasible scheme and reliable basis for the rapid and sensitive detection of clinical drugs and proteins, but also provides a new idea and direction for the further and extensive study of the multiple functions of new nanomaterials.
【學位授予單位】:吉林大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TP212.3;R927
【相似文獻】
相關(guān)期刊論文 前10條
1 葉鵬;宋金春;;量子點在藥學領(lǐng)域的應用及前景[J];中國醫(yī)院藥學雜志;2008年23期
2 譚君;祝連彩;;量子點在新藥開發(fā)中的應用[J];生命的化學;2008年06期
3 李鴻梅,房學迅,陳娟娟,李惟,王麗萍;量子點熒光標記應用于生物學的研究進展[J];國外醫(yī)學.生物醫(yī)學工程分冊;2004年05期
4 徐萌,陳新明;量子點在腫瘤醫(yī)學中的應用[J];國外醫(yī)學(腫瘤學分冊);2005年09期
5 李琨;焦嫦亮;尹翔;王順偉;王吉偉;張陽德;;量子點熒光標記及其應用[J];現(xiàn)代臨床醫(yī)學生物工程學雜志;2006年04期
6 楊玲玲;;量子點及其在生物光子學中的應用[J];現(xiàn)代醫(yī)用影像學;2007年01期
7 張毅;;量子點在生物和醫(yī)學中的應用進展[J];石油化工應用;2008年02期
8 鄭少鸞;朱立新;許小亮;王本忠;;量子點的熒光特性在生物標記成像中的應用及展望[J];現(xiàn)代生物醫(yī)學進展;2013年06期
9 李丹;嚴拯宇;;量子點的制備及其在生物分析中的應用[J];藥物生物技術(shù);2007年05期
10 崔慶新;趙學武;王磊;姜瑋;;新型熒光探針量子點在生命科學和藥學中的應用[J];中國藥學雜志;2008年01期
相關(guān)會議論文 前10條
1 胡德紅;武紅敏;梁建功;韓鶴友;;量子點與蛋白質(zhì)相互作用研究[A];第五屆全國化學生物學學術(shù)會議論文摘要集[C];2007年
2 宋濤;逯超亮;宮曉群;楊秋花;李云紅;常津;;量子點熒光編碼微球的制備[A];天津市生物醫(yī)學工程學會第30次學術(shù)年會暨生物醫(yī)學工程前沿科學研討會論文集[C];2010年
3 楊久敏;宮曉群;張琦;宋濤;劉鐵根;李迎新;常津;;小波變換在量子點編碼識別中的應用[A];天津市生物醫(yī)學工程學會第30次學術(shù)年會暨生物醫(yī)學工程前沿科學研討會論文集[C];2010年
4 李佳涵;葛玉舒;田方方;樊婷;袁蓮;劉義;;微量熱研究量子點對線粒體代謝的影響[A];中國化學會第十五屆全國化學熱力學和熱分析學術(shù)會議論文摘要[C];2010年
5 何治柯;;小粒經(jīng)近紅外低毒水溶性量子點的合成及應用研究[A];中國化學會第十屆全國發(fā)光分析學術(shù)研討會論文集[C];2011年
6 賈金鋒;;全同金屬量子點的生長與研究[A];2001年納米和表面科學與技術(shù)全國會議論文摘要集[C];2001年
7 張友林;曾慶輝;孔祥貴;;用于在體高靈敏檢測的量子點發(fā)光光纖生物傳感器[A];中國生物醫(yī)學工程進展——2007中國生物醫(yī)學工程聯(lián)合學術(shù)年會論文集(上冊)[C];2007年
8 王金嬡;王琛;付國;劉力;王桂英;;量子點的三維取向探測[A];2006年全國強場激光物理會議論文集[C];2006年
9 張家雨;崔一平;王志兵;;膠體量子點的電致發(fā)光研究[A];第十七屆十三。ㄊ校┕鈱W學術(shù)年會暨“五省一市光學聯(lián)合年會”論文集[C];2008年
10 原鳳英;蔣最敏;陸f ;;鍺硅雙層量子點耦合效應的研究[A];第十六屆全國半導體物理學術(shù)會議論文摘要集[C];2007年
相關(guān)重要報紙文章 前10條
1 馮衛(wèi)東;美研究可高效阻斷蛋白生成的量子點技術(shù)[N];科技日報;2008年
2 記者 常麗君;韓國造出全彩色量子點顯示屏[N];科技日報;2011年
3 記者 曲照貴;天大首創(chuàng)零污染量子點合成工藝[N];中國化工報;2013年
4 劉牧洋;我國量子點研究獲新突破[N];光明日報;2003年
5 王全楚;“量子點”熒光標記初露端倪[N];健康報;2005年
6 劉霞;科學實驗發(fā)現(xiàn):量子點不是點[N];科技日報;2010年
7 記者 劉霞;量子點顯示屏或?qū)⒊芍髁鱗N];科技日報;2010年
8 劉霞;膠體量子點太陽能電池轉(zhuǎn)化效率創(chuàng)紀錄[N];科技日報;2011年
9 本報記者 于歡;納米技術(shù)全面升級LED[N];中國能源報;2010年
10 記者馬艷紅;中科院化學所成功制備量子點熒光微球[N];中國醫(yī)藥報;2005年
相關(guān)博士學位論文 前10條
1 王立民;量子點分子及量子點團簇的電子結(jié)構(gòu)[D];北京師范大學;2002年
2 石星波;單個量子點的光學性質(zhì)研究及其在超高分辨率定位上的應用[D];湖南大學;2012年
3 王解兵;Ⅱ-Ⅵ族油溶性量子點的制備、修飾及應用研究[D];上海交通大學;2013年
4 李釩;高熒光碳量子點的制備及其應用研究[D];中國人民解放軍軍事醫(yī)學科學院;2015年
5 周宏明;核殼型量子點的能帶結(jié)構(gòu)及其光學非線性[D];武漢大學;2013年
6 黃碧海;基于量子點標記的生物探針構(gòu)建[D];武漢大學;2012年
7 潘佳奇;半導體ZnSe量子點和碳量子點的制備及其應用[D];蘭州大學;2015年
8 卞偉;錳摻雜硫化鋅量子點磷光探針研究及分析應用[D];山西大學;2015年
9 胡思怡;基于微流控技術(shù)的功能型量子點的合成及應用[D];長春理工大學;2015年
10 梁瑞政;光功能客體/LDHs插層復合材料的構(gòu)筑及其性能研究[D];北京化工大學;2015年
相關(guān)碩士學位論文 前10條
1 尹芳蕊;納米顆!孔狱c經(jīng)嗅覺通路進入中樞神經(jīng)系統(tǒng)的實驗研究[D];內(nèi)蒙古科技大學包頭醫(yī)學院;2008年
2 許智祥;熒光量子點的制備及應用研究[D];華中科技大學;2007年
3 李秀清;量子點的不同修飾方法對其與牛血清白蛋白的作用的影響[D];華中科技大學;2007年
4 華曉鋒;量子點與生物分子的偶聯(lián)及其應用[D];華中科技大學;2006年
5 李玉丹;單電子隧穿耦合量子點的輸運和光學性質(zhì)[D];山西大學;2011年
6 何至青;水溶性量子點的制備與性能研究[D];武漢理工大學;2012年
7 陳清愛;基于量子點的金屬離子檢測和碳點的制備及其發(fā)光研究[D];福建農(nóng)林大學;2012年
8 盧鵬;核分析技術(shù)在水溶性氧化鋅量子點吸收中的應用[D];復旦大學;2012年
9 張翼飛;鍺硅單量子點的耦合和瞬態(tài)電學性質(zhì)研究[D];復旦大學;2010年
10 趙瀟;一種納米級碳量子點的合成、修飾、表征及生物學評價[D];華東師范大學;2015年
,本文編號:2206430
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2206430.html