天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 碩博論文 > 信息類博士論文 >

水平磁性液體微壓差傳感器的理論及實(shí)驗(yàn)研究

發(fā)布時(shí)間:2018-08-15 15:03
【摘要】:磁性液體是一種兼具固體材料的磁性和液體材料的流動(dòng)性的新型納米功能材料,其在磁場(chǎng)梯度作用下的表面不穩(wěn)定性和獨(dú)有的二階浮力使得其在傳感器領(lǐng)域有著廣闊的應(yīng)用前景。目前我國(guó)的高精密微壓差傳感器的制造水平和工藝與國(guó)外(10-3a量級(jí))差距很大,這一問(wèn)題亟需通過(guò)采用新材料、新工藝、新結(jié)構(gòu)的方式解決。本文以煤油基、機(jī)油基、水基、酯基磁性液體為基礎(chǔ),利用磁性液體的二階浮力原理,提出了一種電感式水平磁性液體微壓差傳感器的模型。在理論方面,推導(dǎo)了該模型中復(fù)合磁芯永久磁鐵與回復(fù)力磁鐵之間的回復(fù)力公式,給出了復(fù)合磁芯的下沉公式,得出了水平磁性液體微壓差傳感器的耐壓能力與復(fù)合磁芯和透明亞克力管之間單邊間隙的數(shù)學(xué)關(guān)系,計(jì)算了復(fù)合磁芯的位移與線圈電感變化之間的函數(shù)關(guān)系,推出了水平磁性液體微壓差傳感器靜態(tài)測(cè)量時(shí)的輸入輸出特性和動(dòng)態(tài)測(cè)量時(shí)的二階系統(tǒng)傳遞函數(shù);在結(jié)構(gòu)設(shè)計(jì)方面,針對(duì)水平磁性液體微壓差傳感器的敏感元件和轉(zhuǎn)換元件,提出了不同的設(shè)計(jì)模型,通過(guò)理論分析、仿真研究和實(shí)驗(yàn)測(cè)量等手段確定了最終各元件的參數(shù);在仿真方面,利用ANSYS有限元分析軟件對(duì)永久磁鐵間的回復(fù)力、復(fù)合磁芯在透明亞克力管中的下沉距離以及磁性液體環(huán)的耐壓值進(jìn)行了仿真分析,同時(shí)運(yùn)用MATLAB軟件對(duì)水平磁性液體微壓差傳感器的尺寸參數(shù)進(jìn)行了優(yōu)化設(shè)計(jì),對(duì)二階水平磁性液體微壓差傳感器系統(tǒng)在階躍壓強(qiáng)作用下的動(dòng)態(tài)輸出特性進(jìn)行了仿真分析;在實(shí)驗(yàn)方面,給出了永久磁鐵之間回復(fù)力的線性擬合公式,確定了水平磁性液體微壓差傳感器的最終量程范圍,深入研究了水平磁性液體微壓差傳感器靜態(tài)測(cè)量時(shí)的輸入輸出關(guān)系,并探究了該傳感器的線性度、靈敏度、精度、分辨率、遲滯、重復(fù)性和穩(wěn)定性,同時(shí)對(duì)不同基載液(即不同粘度)的磁性液體對(duì)水平磁性液體微壓差傳感器動(dòng)態(tài)輸出特性的影響進(jìn)行了實(shí)驗(yàn)研究,并將實(shí)驗(yàn)結(jié)果與仿真結(jié)果相比較,分析了理論值和實(shí)驗(yàn)值存在差異的原因。得出的創(chuàng)新性結(jié)論如下:(1)設(shè)計(jì)了一種新型的水平磁性液體微壓差傳感器,該傳感器的量程范圍士1000Pa,精度△Xmax= 10Pa,線性度ef=2.5%、靈敏度S=0.1mV/Pa、分辨率0.6%F.S.,遲滯 δH = ±1.25%;(2)水平磁性液體微壓差傳感器的量程范圍主要由以下兩方面因素共同決定:一是磁性液體密封環(huán)的密封耐壓能力;二是永久磁鐵回復(fù)力的線性區(qū)間所允許的復(fù)合磁芯位移量。水平磁性液體微壓差傳感器最終的量程范圍由二者中較小者決定;(3)基于二階浮力原理,根據(jù)仿真結(jié)果給出了復(fù)合磁芯吸附磁性液體后在透明亞克力管中下沉距離的經(jīng)驗(yàn)公式,公式表明復(fù)合磁芯的下沉距離與磁芯重量、磁性液體飽和磁化強(qiáng)度有關(guān),這為研究水平磁性液體微壓差傳感器中磁性液體密封環(huán)的耐壓能力提供了理論依據(jù);(4)磁性液體粘度對(duì)水平磁性液體微壓差傳感器靜態(tài)性能的影響可以忽略不計(jì),但對(duì)水平磁性液體微壓差傳感器的上升時(shí)間、超調(diào)量、振蕩次數(shù)、穩(wěn)定時(shí)間等動(dòng)態(tài)參數(shù)的影響較大;(5)基于所設(shè)計(jì)的水平磁性液體微壓差傳感器,提出了靜態(tài)測(cè)量時(shí)的非線性規(guī)劃模型,并進(jìn)行了仿真分析和實(shí)驗(yàn)研究,實(shí)驗(yàn)值和理論值基本一致。并給出了理想狀態(tài)下的水平磁性液體微壓差傳感器的尺寸參數(shù)最優(yōu)值;(6)水平磁性液體微壓差傳感器中的復(fù)合磁芯可以視為質(zhì)量塊,永久磁鐵之間的回復(fù)力可以視為彈簧項(xiàng),磁性液體與透明亞克力管之間的牛頓內(nèi)摩擦力可以視為阻尼項(xiàng),由此可知水平磁性液體微壓差傳感器可以等效成二階動(dòng)態(tài)系統(tǒng)。以此為基礎(chǔ)推導(dǎo)了水平磁性液體微壓差傳感器的傳遞函數(shù),分析了各參數(shù)對(duì)水平磁性液體微壓差傳感器動(dòng)態(tài)性能的影響,為今后水平磁性液體微壓差傳感器應(yīng)用于動(dòng)態(tài)測(cè)量時(shí)的參數(shù)設(shè)計(jì)提供了理論依據(jù)。
[Abstract]:Magnetic fluid is a new kind of nano-functional material with both magnetic properties of solid materials and fluidity of liquid materials. Its surface instability under magnetic field gradient and unique second-order buoyancy make it have broad application prospects in the field of sensors. At present, the manufacturing level and technology of high-precision micro-differential pressure sensors in China This problem needs to be solved by using new materials, new technology and new structure. Based on kerosene-based, oil-based, water-based and ester-based magnetic fluids, a model of inductive horizontal magnetic fluids micro-differential pressure sensor is proposed by using the second-order buoyancy principle of magnetic fluids. The restoring force formula between permanent magnet with composite core and restoring force magnet in the model is deduced. The sinking formula of composite core is given. The mathematical relationship between the pressure resistance of horizontal magnetic fluid micro-pressure differential sensor and the unilateral gap between composite core and transparent acrylic tube is obtained. The displacement of composite core and the coil electricity are calculated. The input-output characteristic and the second-order system transfer function of the horizontal magnetic fluid micro-differential pressure sensor in static and dynamic measurement are deduced from the functional relationship between the inductance changes. In the aspect of simulation, the restoring force between permanent magnets, the sinking distance of composite core in transparent acrylic tube and the pressure resistance value of magnetic fluid ring are simulated and analyzed by ANSYS finite element analysis software, and the horizontal magnetism is also analyzed by MATLAB software. The dimension parameters of the liquid micro-differential pressure sensor are optimized and the dynamic output characteristics of the second-order horizontal magnetic liquid micro-differential pressure sensor system under step pressure are simulated and analyzed. In the final range of measurement, the relationship between input and output in the static measurement of the horizontal magnetic fluid micro-differential pressure sensor is deeply studied, and the linearity, sensitivity, precision, resolution, hysteresis, repeatability and stability of the sensor are explored. The experimental study on the dynamic output characteristics is carried out and the reasons for the difference between the theoretical and experimental values are analyzed by comparing the experimental results with the simulation results. The innovative conclusions are as follows: (1) A new type of horizontal magnetic fluid micro-differential pressure sensor is designed. The measuring range of the sensor is 1000Pa, and the precision is {Xmax=10Pa,} line. Property EF = 2.5%, sensitivity S = 0.1 mV/Pa, resolution 0.6% F.S., hysteresis Delta H = + 1.25%; (2) The range of the horizontal magnetic fluid micro-differential pressure sensor is mainly determined by the following two factors: one is the sealing resistance of the magnetic fluid seal ring; the other is the displacement of the composite core allowed by the linear range of the permanent magnet's resilience. Based on the second-order buoyancy principle, the empirical formula of the sinking distance of the composite core adsorbed magnetic fluid in a transparent acrylic tube is given according to the simulation results. The formula shows the sinking distance of the composite core and the weight of the core, and the saturation magnetism of the magnetic fluid. The results provide a theoretical basis for studying the pressure resistance of the magnetic fluid sealing ring in the horizontal magnetic fluid micro-differential pressure sensor. (4) The influence of the viscosity of the magnetic fluid on the static performance of the horizontal magnetic fluid micro-differential pressure sensor can be neglected, but the rise time, overshoot and oscillation of the horizontal magnetic fluid micro-differential pressure sensor can be neglected. (5) Based on the designed horizontal magnetic fluid micro-differential pressure sensor, a nonlinear programming model for static measurement is proposed, and the simulation analysis and experimental research are carried out. The experimental and theoretical values are basically the same. (6) The composite core in the horizontal magnetic fluid micro-differential pressure sensor can be regarded as a mass block, the restoring force between permanent magnets can be regarded as a spring term, and the Newtonian internal friction between the magnetic fluid and the transparent acrylic tube can be regarded as a damping term. Based on this, the transfer function of the horizontal magnetic fluid micro-differential pressure sensor is deduced, and the influence of various parameters on the dynamic performance of the horizontal magnetic fluid micro-differential pressure sensor is analyzed. The theoretical basis is provided for the parameter design of the horizontal magnetic fluid micro-differential pressure sensor when it is applied to the dynamic measurement in the future.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP212

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王瑞凱;左洪福;呂萌;;環(huán)形磁鐵空間磁場(chǎng)的解析計(jì)算與仿真[J];航空計(jì)算技術(shù);2011年05期

2 范東;李德才;姚偉君;;磁性液體磁粘效應(yīng)分析及高低溫下粘度變化的初步實(shí)驗(yàn)研究[J];化學(xué)工程師;2011年08期

3 郝瑞參;李德才;;差動(dòng)式磁性液體微壓差傳感器數(shù)學(xué)模型計(jì)算及試驗(yàn)驗(yàn)證[J];機(jī)械工程學(xué)報(bào);2010年12期

4 董國(guó)強(qiáng);李德才;郝瑞參;;基于鐵磁性液體的微差壓傳感器研究[J];傳感技術(shù)學(xué)報(bào);2009年01期

5 張振宇;李德才;;磁性液體磁—粘效應(yīng)研究進(jìn)展及其理論分析[J];華北科技學(xué)院學(xué)報(bào);2008年04期

6 翁春生;王杰;白橋棟;馬丹花;;脈沖爆轟發(fā)動(dòng)機(jī)進(jìn)氣壓力對(duì)爆轟影響的實(shí)驗(yàn)研究[J];彈道學(xué)報(bào);2008年03期

7 李雄林;曹小林;張明星;姚景洲;馮明坤;;空調(diào)器性能測(cè)試中風(fēng)量測(cè)量不確定度的研究[J];流體機(jī)械;2008年02期

8 翟旭升;謝壽生;楊偉;蔡開(kāi)龍;;基于自適應(yīng)模糊PID控制的恒壓供氣系統(tǒng)[J];液壓與氣動(dòng);2008年02期

9 樓鋼;李偉;鄧學(xué)博;;小信號(hào)放大電路設(shè)計(jì)[J];浙江理工大學(xué)學(xué)報(bào);2007年06期

10 邱峰;季霞;;硅微超微壓傳感器設(shè)計(jì)[J];機(jī)械設(shè)計(jì)與制造;2007年10期

相關(guān)博士學(xué)位論文 前1條

1 郝瑞參;磁性液體微壓差傳感器的理論及實(shí)驗(yàn)研究[D];北京交通大學(xué);2011年

相關(guān)碩士學(xué)位論文 前6條

1 邢延思;磁性液體微壓差傳感器的理論及實(shí)驗(yàn)研究[D];北京交通大學(xué);2015年

2 姚偉君;不同溫度下磁性液體磁粘效應(yīng)的機(jī)理分析及實(shí)驗(yàn)研究[D];北京交通大學(xué);2012年

3 范東;不同溫度下磁性液體磁粘效應(yīng)的研究[D];北京交通大學(xué);2012年

4 尤彩紅;硅壓阻微壓傳感器的設(shè)計(jì)[D];中北大學(xué);2009年

5 董國(guó)強(qiáng);磁性液體微壓差傳感器的理論及實(shí)驗(yàn)研究[D];北京交通大學(xué);2008年

6 李曄辰;硅電容式差壓傳感器的研制[D];沈陽(yáng)工業(yè)大學(xué);2003年



本文編號(hào):2184568

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2184568.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶89207***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com