SiGe HBT低噪聲放大器的研究
[Abstract]:As a process to compromise the price and performance of CMOS technology and Ga As, SiGe HBT (Hetrojunction bipolar transistor, HBT) technology has a very good application prospect. This process combines RF applications and designs a variety of RF communication circuits based on high performance devices. Among them, low noise amplifier circuits (Low noise amplifier) are the most important. Representative. As the core circuit of the front end of the receiver, the low noise amplifier requires a variety of tradeoffs between gain, matching, noise coefficient and linear performance. The performance of the circuit determines the overall performance of the receiver. The X, Ku band receiver and the higher frequency microwave level circuit for the current hot research, the electric circuit The road is more difficult to develop. This paper makes a more in-depth study of the SiGe HBT transistor model and LNA circuit. The main innovations are as follows: the process characteristics of SiGe HBT and the bipolar transistor small signal model are analyzed, and the main noise contributors of the SiGe Hicum devices are proposed. On this basis, the dual port network is analyzed in the circuit noise side. On the basis of the SiGe HBT process, a small signal model of the SiGe process is proposed on the basis of the bipolar transistor small signal, and the noise model of the SiGe transistor is proposed with the physical model of the Hicum model, based on the physical model, and the multi port noise network is proposed based on the analysis of the dual port network. The theory of the collaterals, which can be applied to the analysis of the circuit level, is not limited to the single device transistor analysis, and provides a solid theoretical guidance for the design of the low noise amplifier. Several important indexes of the SiGe low noise amplifier are analyzed, including input matching, gain flatness and linear specificity. The 14 order filter matching network is designed. The circuit optimization of the structure makes the input matching and noise performance best compromise. In the aspect of gain flatness, the problem of matching and network noise is analyzed, and the 14 order 6~14GHz low noise amplifier is designed by using on chip inductance compensation and zero pole method. The gain of the circuit is only 0.4dB, according to the gain allocation principle. At the same time, a parallel parallel negative feedback structure is used at the input end to ensure the input matching. The circuit introduces an extra zero point through the inductor at the third stage to compensate the pole roll drop, and the local negative feedback and the whole negative feedback are used at the same time. In view of the linear degree difference of SiGe devices, a method to optimize linear performance of single stage SiGe low noise amplifier based on the nonlinear model of bipolar transistors is proposed in accordance with the weak nonlinear model of transistors. According to the weak nonlinear model of transistor, the linear performance optimization method of single stage SiGe low noise amplifier is carried out based on the Volterra series. The analysis method of linear degree is proposed, and the contribution of each parameter online degree is quantified, which makes the bipolar LNA have the IIP3 performance of -7.7dBm under ultra wide frequency. Design UWB band and X, Ku band ultra wideband SiGe low noise amplifier. The LNA in UWB system is studied in noise flatness, and the noise based on quality factor optimization is proposed. In the circuit design of X, Ku band low noise amplifier, the design process of the low noise amplifier is more focused on the complete design process. The input matching, gain, linearity and noise of the corresponding circuit are analyzed and optimized respectively. At the same time, the common questions and optimization methods of the radio frequency layout are put forward, on the basis of the circuit design and optimization. The test method of high frequency circuit is put forward, the test method flow of RF circuit is described in detail, the results are analyzed and discussed. The S parameter measurement, noise measurement and linearity measurement are emphasized. The LNA can achieve the gain of 16dB and the noise coefficient below 4dB in the applied frequency band, and the 1dB compression point also realizes the -18dBm. suppression for the mirror frequency. The type receiver is designed for two types of low noise amplifier structures for SiGe with the function of mirror frequency suppression for different application bands. Among them, the passive filter structure used by the K frequency band low noise amplifier realizes the 33.6dB mirror frequency suppression ratio and the gain of 19d B; the second low noise amplifier realizes 33d through the active mirror filter on the chip. The mirror frequency suppression ratio of B is of good practicability and theoretical guidance. The design process and design method of SiGe HBT low noise amplifier are described in detail and well. The circuit design work is expounded in detail from the theory and design aspects by a variety of examples. It is common in the aspects of gain, matching, linearity and noise. An example is given to analyze and illustrate, providing important theoretical guidance and design ideas for LNA circuit design.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TN722.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;高頻低噪聲放大器[J];國外電子元器件;2001年01期
2 安毅,呂昕,高本慶;振幅比較單脈沖系統(tǒng)中前端低噪聲放大器的選擇[J];雷達(dá)與對抗;2001年01期
3 曹克,楊華中,汪蕙;低電壓低功耗CMOS射頻低噪聲放大器的研究進(jìn)展[J];微電子學(xué);2003年04期
4 一凡;全波段毫米波低噪聲放大器[J];微電子技術(shù);2003年03期
5 張廣,鄭武團(tuán),田海林;低噪聲放大器的網(wǎng)絡(luò)設(shè)計(jì)法[J];現(xiàn)代電子技術(shù);2004年01期
6 ;安捷倫科技推出具關(guān)斷功能的超低噪聲放大器模塊[J];電子與電腦;2005年11期
7 張紅南;黃雅攸;蔣超;顏永紅;;高增益低功耗CMOS低噪聲放大器的設(shè)計(jì)[J];微計(jì)算機(jī)信息;2008年29期
8 劉峻;盧劍;李新;郭宇;蘇建華;梁潔;;一種低噪聲放大器的白噪聲分析[J];中國集成電路;2009年08期
9 周偉中;;低噪聲放大器的仿真設(shè)計(jì)[J];科技資訊;2010年14期
10 張維佳;;非平衡變換低噪聲放大器的設(shè)計(jì)[J];信息通信;2012年02期
相關(guān)會議論文 前10條
1 張乾本;;45°K超低噪聲放大器[A];1993年全國微波會議論文集(下冊)[C];1993年
2 高飛;張曉平;郜龍馬;朱美紅;曹必松;高葆新;;低溫低噪聲放大器特性研究[A];2003'全國微波毫米波會議論文集[C];2003年
3 鄭磊;胡皓全;田立卿;;低噪聲放大器的設(shè)計(jì)[A];2005'全國微波毫米波會議論文集(第三冊)[C];2006年
4 郭偉;鮑景富;;低噪聲放大器穩(wěn)定性分析與設(shè)計(jì)方法[A];2005'全國微波毫米波會議論文集(第二冊)[C];2006年
5 賀菁;董宇亮;徐軍;李桂萍;;5mm寬帶低噪聲放大器的研制[A];2007年全國微波毫米波會議論文集(上冊)[C];2007年
6 劉暢;梁曉新;閻躍鵬;;射頻寬帶低噪聲放大器設(shè)計(jì)[A];2009安捷倫科技節(jié)論文集[C];2009年
7 王云峰;李磊;梁遠(yuǎn)軍;朱文龍;;雙平衡支路低噪聲放大器的設(shè)計(jì)與測試[A];2009安捷倫科技節(jié)論文集[C];2009年
8 劉寶宏;陳東坡;毛軍發(fā);;一種采用正體偏置和增益增強(qiáng)技術(shù)的低電壓低功耗低噪聲放大器[A];2009年全國微波毫米波會議論文集(下冊)[C];2009年
9 張利飛;汪海勇;;低噪聲放大器的仿真設(shè)計(jì)[A];2009年全國微波毫米波會議論文集(下冊)[C];2009年
10 王漢華;胡先進(jìn);;衛(wèi)星電視低噪聲放大器的設(shè)計(jì)[A];1997年全國微波會議論文集(上冊)[C];1997年
相關(guān)重要報紙文章 前1條
1 四川 張達(dá) 編譯;增益從1到1000倍可變的高精度低噪聲放大器[N];電子報;2004年
相關(guān)博士學(xué)位論文 前10條
1 井凱;SiGe HBT低噪聲放大器的研究[D];西安電子科技大學(xué);2016年
2 曹克;低電壓低功耗CMOS射頻低噪聲放大器設(shè)計(jì)[D];清華大學(xué);2005年
3 劉寶宏;CMOS工藝的低電壓低噪聲放大器研究[D];上海交通大學(xué);2011年
4 黃煜梅;CMOS藍(lán)牙收發(fā)器中低噪聲放大器的設(shè)計(jì)及高頻噪聲研究[D];復(fù)旦大學(xué);2004年
5 許永生;CMOS射頻器件建模及低噪聲放大器的設(shè)計(jì)研究[D];華東師范大學(xué);2006年
6 李琨;低噪聲放大器動態(tài)范圍擴(kuò)展的理論和方法研究[D];天津大學(xué);2010年
7 王軍;低噪聲放大器模塊化分析與設(shè)計(jì)的等效噪聲模型法的研究[D];電子科技大學(xué);1999年
8 黃東;面向多帶多標(biāo)準(zhǔn)接收機(jī)的寬帶CMOS低噪聲放大器研究[D];中國科學(xué)技術(shù)大學(xué);2015年
9 彭洋洋;微波/毫米波單片集成收發(fā)機(jī)中關(guān)鍵電路的設(shè)計(jì)及其小型化[D];浙江大學(xué);2012年
10 李芹;無生產(chǎn)線模式微波單片集成電路設(shè)計(jì)與實(shí)驗(yàn)研究[D];東南大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 張全;宇航用低噪聲放大器研制及其可靠性研究[D];西安電子科技大學(xué);2012年
2 馮永革;低噪聲放大器的研究與設(shè)計(jì)[D];南京理工大學(xué);2015年
3 易凱;CMOS毫米波低噪聲放大器設(shè)計(jì)[D];電子科技大學(xué);2014年
4 賴宏南;超寬帶大動態(tài)自動電平控制系統(tǒng)研究[D];電子科技大學(xué);2014年
5 李佩;微波單片專用集成電路設(shè)計(jì)[D];電子科技大學(xué);2009年
6 王軻;微波寬帶低噪聲放大器研究[D];電子科技大學(xué);2015年
7 李凱;平衡式低噪聲放大器設(shè)計(jì)[D];電子科技大學(xué);2015年
8 趙艷陽;X波段限幅低噪聲放大器設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2014年
9 李辛琦;1.2GHz CMOS低噪聲放大器的仿真設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2015年
10 孫海昕;基于CMOS工藝的射頻低噪聲放大器的設(shè)計(jì)[D];黑龍江大學(xué);2015年
,本文編號:2169450
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2169450.html