基于模糊模型和形狀特征的CT序列圖像分割方法研究
[Abstract]:Computed Tomography (CT), as an advanced detection technology, reflects the internal structure and character of the object clearly and clearly in the form of image. It is widely used in the field of medical diagnosis and industrial nondestructive testing. With the development and application of CT technology, the application of CT image processing technology is realized. Quantitative, automated analysis and measurement of the measured objects to overcome the lack of qualitative subjective evaluation is one of the important directions of the development of CT technology..CT image segmentation is the key and difficult point to realize image quantization analysis, automatic recognition and measurement. This paper takes a typical CT sequence three-dimensional image segmentation as the research content, aiming at a class of boundary in medical CT The difficult problem of blurring image segmentation and the image segmentation problem of a kind of voxel scale in industrial CT is studied. A kind of automatic anatomical structure segmentation (AAR) method for medical systemic positron emission tomography / computerized tomography (PET/CT) image based on object membership and an industrial CT image crack based on shape feature are proposed. The main work of slit segmentation. The main work is as follows: 1, a PET/CT image AAR method based on object membership is proposed. In view of the original AAR method, the accuracy is higher in the segmentation of the anatomical structure of the diagnostic CT image with better image quality, but the PET image with poor image quality (the dissected structure is more obscure) and the low dose CT image (lower contrast) In this paper, a AAR method based on object membership is proposed in this paper, based on the gray and texture features of organs. In the process of modeling, the membership degree function of the object, which combines the gray and texture information of the training image, is proposed to estimate the probability of each body element belonging to the body, and the object is used in the segmentation process. The subjection function of body membership function obtains the membership degree of the object in the test image, and then combines the membership degree of the object to the initial position of the object model and the optimal position searching of the threshold, determines the optimal position of the object model, and finally obtains the result of the space distribution of the object, and uses the two indexes of the positioning error and the scale error, and the experimental verification is carried out through the PET/CT image. The results show that the improved method can achieve more accurate anatomical structure segmentation, the average positioning error is only 1-2 voxel, the average scale error is close to the standard value 1.2, and the optimal threshold training method of the AAR method is improved. In the AAR method, the original optimal threshold training method has high spatial dimension and poor adaptability, which is only applicable to the problem of gray image. In this paper, an improved optimal threshold training method is proposed by using the hyper mask and cumulative gray histogram. That is, the cumulative gray histogram of the target and the background is calculated under the super mask, and the absolute difference of the two histogram areas is calculated under any possible threshold range, and the optimal threshold is selected to make the maximum absolute difference as the optimal threshold. The improved method will search the search method. The space is reduced from 5 dimension to 1 dimension, and the optimal threshold search is achieved with high efficiency. It avoids the loss of possible optimal threshold by limiting the threshold search range. The experimental results show that the improved method can be applied to gray, texture and membership images, output reasonable object threshold to achieve more accurate anatomical structure segmentation.3, and improve the AAR method. The original AAR method is only suitable for local body area images such as chest and abdomen. It is necessary to manually divide the whole body image into a local body area. In order to improve the degree of automation, this paper uses the anatomical structure of various organs of the body to put forward a whole body structure, that is, the whole body is a tree structure with a tree structure. It is shown that all organs are modeled and segmented in sequence according to the breadth priority. The experimental verification through the PET/CT image of the whole body shows that the improved method can realize the precise segmentation of the body anatomy structure and improve the automation degree.4. The modeling and preliminary segmentation scheme between different imaging modes is proposed. The model class method is usually used. In the imaging mode, modeling - preliminary segmentation requires training data from the same imaging mode, without considering the possibility of building fast prototypes that are commonly used in various imaging modes. This paper uses the fuzzy model to contain the advantages of object shape and spatial location information, which is independent of the imaging mode, modeling and segmenting two preliminary methods in the AAR method. In the basic step, the modeling and preliminary segmentation scheme between imaging modes is proposed. The feasibility of dissecting the anatomical structure of the fuzzy model established by the diagnostic CT image on PET, low dose CT and their object membership image is verified by experiments. This provides a kind of rapid object prototype for various imaging modes. .5, an industrial CT sequence image segmentation method based on shape features is proposed. The detection of cracks inside the workpiece, automatic display and measurement is one of the difficulties that industrial CT needs to solve, and image segmentation is the key. In industrial CT system, the obtained 3D images are mostly composed of sequence fault images and the body in the image. The equivalent size equivalent in the plane of the fault and the equivalent size equivalent perpendicular to the fault direction are very different, sometimes more than 10 times, and the various artifacts of the industrial CT image are more serious. This adds to the difficulty of the fracture segmentation and quantitative measurement. In this paper, the application of the voxel dimension anisotropy is studied in this paper. The method of automatic segmentation of cracks in industrial CT sequence images: first, the two-dimensional linear structure filtering based on Hessian matrix is used to enhance the linear region of the image. On this basis, a two-dimensional histogram which combines the continuity of the interlayer gray scale and direction and the gray mean value of the inner line neighborhood is further proposed to suppress the segmentation of the artifacts. According to the maximum class entropy of the histogram, the threshold interval is determined and the two value segmentation results are obtained. Finally, the accuracy rate, the recall rate and the F1 value are used to verify the experimental results through the industrial CT sequence images of the actual workpiece. The results show that the proposed method is not only compared with the other four commonly used methods, and can be obtained. More complete and more accurate segmentation results meet the actual industrial CT sequence image crack segmentation accuracy requirements, and the degree of automation is higher.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 林三虎,孫繼業(yè),趙亦工;多用途實(shí)時(shí)序列圖像場(chǎng)景產(chǎn)生器[J];紅外與毫米波學(xué)報(bào);2002年05期
2 侍術(shù)干;費(fèi)樹岷;翟軍勇;;序列圖像背景重建方法[J];南京航空航天大學(xué)學(xué)報(bào);2006年S1期
3 高浩軍;杜宇人;;基于視頻序列圖像的車輛測(cè)速研究[J];電子測(cè)量技術(shù);2007年02期
4 楊延光;周智敏;宋千;王玉明;金添;;一種VFGPIR序列圖像特征評(píng)估與選擇新方法[J];信號(hào)處理;2009年10期
5 姚美紅;程國治;于京諾;;一種基于序列圖像的車輛避撞預(yù)警算法[J];拖拉機(jī)與農(nóng)用運(yùn)輸車;2010年05期
6 趙宇明,李介谷;序列圖像目標(biāo)跟蹤的神經(jīng)網(wǎng)絡(luò)算法[J];上海交通大學(xué)學(xué)報(bào);1995年06期
7 孫華燕,周道炳,李生良;一種序列圖像的拼接方法[J];光學(xué)精密工程;2000年01期
8 韓廣良,顧海軍,宋建中,董學(xué)志;基于實(shí)時(shí)序列圖像復(fù)雜背景下運(yùn)動(dòng)目標(biāo)的提取[J];吉林大學(xué)學(xué)報(bào)(信息科學(xué)版);2003年S1期
9 邱志強(qiáng),陸宏偉,張小虎,于起峰;基于因子分解和光束法平差從航空序列圖像恢復(fù)三維結(jié)構(gòu)[J];國防科技大學(xué)學(xué)報(bào);2004年04期
10 鄭軍,張偉,馬兆瑞,施克仁,潘際鑾;基于序列圖像時(shí)間穩(wěn)定性特征的背景估計(jì)技術(shù)[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年05期
相關(guān)會(huì)議論文 前10條
1 倪軍;袁家虎;吳欽章;;序列圖像中跟蹤目標(biāo)的一種簡(jiǎn)單算法[A];2004全國圖像傳感器技術(shù)學(xué)術(shù)交流會(huì)議論文集[C];2004年
2 李斌;胡秋平;常增田;;一種基于紅外序列圖像的微弱光信號(hào)時(shí)刻測(cè)試方法[A];2011西部光子學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2011年
3 蔣明;;基于序列圖像的魚類機(jī)動(dòng)性分析系統(tǒng)[A];蘇州市自然科學(xué)優(yōu)秀學(xué)術(shù)論文匯編(2008-2009)[C];2010年
4 鄭世友;付主木;費(fèi)樹岷;龍飛;;基于類四叉樹結(jié)構(gòu)的序列圖像運(yùn)動(dòng)估計(jì)[A];2005年中國智能自動(dòng)化會(huì)議論文集[C];2005年
5 王丹;姜小光;;利用時(shí)間序列圖像的傅立葉分析重構(gòu)中國地區(qū)無云NDVI圖像[A];中國空間科學(xué)學(xué)會(huì)空間探測(cè)專業(yè)委員會(huì)第十七次學(xué)術(shù)會(huì)議論文集[C];2004年
6 高原;胡紹海;;復(fù)雜海平面下序列圖像的快速檢測(cè)[A];第十三屆全國信號(hào)處理學(xué)術(shù)年會(huì)(CCSP-2007)論文集[C];2007年
7 姜長勝;王迪;葛慶平;張存林;趙艷紅;;紅外熱波序列圖像的顯示與增強(qiáng)方法[A];光電技術(shù)與系統(tǒng)文選——中國光學(xué)學(xué)會(huì)光電技術(shù)專業(yè)委員會(huì)成立二十周年暨第十一屆全國光電技術(shù)與系統(tǒng)學(xué)術(shù)會(huì)議論文集[C];2005年
8 王書民;張愛武;崔營營;張珍梅;;基于無人飛艇數(shù)字?jǐn)z影測(cè)量系統(tǒng)及其航拍序列圖像拼接[A];2009全國測(cè)繪科技信息交流會(huì)暨首屆測(cè)繪博客征文頒獎(jiǎng)?wù)撐募痆C];2009年
9 彭豐平;鮑蘇蘇;;基于CT序列圖像肝臟及其管道的分割[A];2008'中國信息技術(shù)與應(yīng)用學(xué)術(shù)論壇論文集(一)[C];2008年
10 施燦輝;劉曉平;吳宜燦;;基于VTK的醫(yī)學(xué)序列圖像可視化[A];全國第十五屆計(jì)算機(jī)科學(xué)與技術(shù)應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2003年
相關(guān)博士學(xué)位論文 前10條
1 王慧倩;基于模糊模型和形狀特征的CT序列圖像分割方法研究[D];重慶大學(xué);2016年
2 王博;紅外序列圖像中運(yùn)動(dòng)弱小目標(biāo)時(shí)域檢測(cè)方法[D];西安電子科技大學(xué);2010年
3 陳穎;序列圖像中微弱點(diǎn)狀運(yùn)動(dòng)目標(biāo)檢測(cè)及跟蹤技術(shù)研究[D];電子科技大學(xué);2003年
4 張鵬林;復(fù)雜場(chǎng)景視頻序列圖像運(yùn)動(dòng)物體提取方法研究[D];武漢大學(xué);2005年
5 梁燕;基于小波變換的序列圖像感興趣區(qū)域編碼[D];天津大學(xué);2005年
6 彭科舉;基于序列圖像的三維重建算法研究[D];國防科學(xué)技術(shù)大學(xué);2012年
7 戴淵明;視頻序列圖像中目標(biāo)跟蹤技術(shù)研究[D];浙江大學(xué);2012年
8 祁艷杰;復(fù)雜結(jié)構(gòu)件的X射線序列圖像融合技術(shù)研究[D];中北大學(xué);2015年
9 李立春;基于無人機(jī)序列成像的地形重建及其在導(dǎo)航中的應(yīng)用研究[D];國防科學(xué)技術(shù)大學(xué);2009年
10 趙立興;基于視頻序列的運(yùn)動(dòng)目標(biāo)濾波、分割與檢測(cè)算法研究[D];燕山大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 江耿紅;多源序列圖像的配準(zhǔn)與融合技術(shù)研究[D];山東大學(xué);2015年
2 胡志發(fā);腎臟CT序列圖像分割方法研究[D];哈爾濱工業(yè)大學(xué);2015年
3 邵昊陽;基于視覺顯著性的乳腺超聲序列圖像分割方法[D];哈爾濱工業(yè)大學(xué);2015年
4 楊艷靜;序列圖像去霧技術(shù)的研究[D];電子科技大學(xué);2014年
5 付達(dá);基于序列圖像的空中目標(biāo)檢測(cè)及識(shí)別方法研究[D];西安電子科技大學(xué);2014年
6 余清洲;航拍序列圖像自動(dòng)拼接技術(shù)的研究[D];集美大學(xué);2015年
7 朱士偉;序列圖像三維重建關(guān)鍵技術(shù)研究[D];東南大學(xué);2015年
8 焦孟君;視頻序列圖像中運(yùn)動(dòng)目標(biāo)檢測(cè)與跟蹤算法研究[D];燕山大學(xué);2016年
9 張揚(yáng);跟蹤系統(tǒng)目標(biāo)檢測(cè)技術(shù)研究[D];西安工業(yè)大學(xué);2016年
10 揭昭斌;基于序列圖像的空間非合作目標(biāo)三維重建方法與精度分析[D];哈爾濱工業(yè)大學(xué);2016年
,本文編號(hào):2166739
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2166739.html