基于外調(diào)制器的微波光子技術(shù)在微波與傳感系統(tǒng)中的應(yīng)用
本文選題:微波光子技術(shù) + 外調(diào)制器; 參考:《南京大學(xué)》2016年博士論文
【摘要】:微波光子學(xué)是一門(mén)交叉學(xué)科,研究的主要問(wèn)題是在光域里產(chǎn)生、處理和傳輸微波信號(hào)。微波光子學(xué)的應(yīng)用領(lǐng)域包括光載無(wú)線(xiàn)通信系統(tǒng)、雷達(dá)系統(tǒng)、光信號(hào)處理、傳感等領(lǐng)域。因?yàn)楣鈱W(xué)器件具有大帶寬、重量輕、高可調(diào)性和重構(gòu)性和抗電磁干擾等優(yōu)點(diǎn),微波光子技術(shù)被認(rèn)為能夠有效地克服“電子瓶頸“問(wèn)題。本論文基于各種外調(diào)制器提出了幾個(gè)微波光子系統(tǒng)解決了微波信號(hào)的產(chǎn)生、傳輸和處理上的一些問(wèn)題。另外,本論文還將微波光子技術(shù)應(yīng)用在了多縱模光纖激光器傳感器上。本論文的主要工作如下:1.我們提出了一種基于DFB激光器的光學(xué)相位共軛變換器(OPC)用來(lái)補(bǔ)償微波光子鏈路中的色散。DFB激光器提供了OPC中的泵浦光源同時(shí)自身也是可以引發(fā)四波混頻(FWM)的介質(zhì)。相比于基于半導(dǎo)體光放大器和色散位移光纖的OPC,我們提供了一個(gè)集成度更高的方案。實(shí)驗(yàn)結(jié)果顯示,通過(guò)這種OPC,50.4 km的微波光子鏈路中的色散被補(bǔ)償并且補(bǔ)償帶寬高達(dá)33 GHz,無(wú)雜散動(dòng)態(tài)范圍(SFDR)也提高了12.6dB·Hz2/3。在微波光子鏈路中的色散點(diǎn)9.2 GHz處,125 Mb/s幅移鍵控信號(hào)的傳輸性能也得到了提高。2.我們提出了一種基于光電振蕩器(OEO)的全占空比三角波發(fā)生器。OEO的振蕩頻率決定了三角波脈沖的重復(fù)頻率。通過(guò)將OEO中的馬赫曾德調(diào)制器(MZM)偏置在正交點(diǎn),OEO的小信號(hào)增益最大化同時(shí)產(chǎn)生的偶次諧波被抑制。通過(guò)精確控制OEO的小信號(hào)增益,使得基波的幅度是三次諧波幅度的9倍。在光電探測(cè)器(PD)產(chǎn)生的電信號(hào)經(jīng)過(guò)一個(gè)90度移相器之后就能夠產(chǎn)生三角波脈沖。實(shí)驗(yàn)中OEO的頻率可以從2 GHz調(diào)諧到10 GHz,OEO的相位噪聲在10 kHz處為-101.7 dBc/Hz。我們也測(cè)試了重復(fù)頻率為3 GHz和6 GHz的三角波,它們與理想三角波的均方根誤差分別為6.4927e-4和9.0932e-4。3.基于偏振調(diào)制器和雙偏振調(diào)制器,我們提出了一種新型的微波頻移鍵控(FSK)發(fā)生器。其中偏振調(diào)制器用來(lái)調(diào)制輸入線(xiàn)偏振光的偏振態(tài),使得輸出光的偏振態(tài)在兩個(gè)正交方向切換,也就是產(chǎn)生了偏振鍵控(PolSK)信號(hào)。雙偏振調(diào)制器由偏振復(fù)用的兩個(gè)子MZM組成。這兩個(gè)子MZM被分別加上了頻率不同的微波信號(hào)。偏振調(diào)制器產(chǎn)生的PolSK信號(hào)送入雙偏振調(diào)制器,通過(guò)偏振控制器將PolSK的軸對(duì)準(zhǔn)雙偏振調(diào)制器的主軸,PolSK信號(hào)就能被轉(zhuǎn)換成微波FSK信號(hào)。實(shí)驗(yàn)上我們將子MZM偏置在正交點(diǎn)并分別加上了3 GHz和6.5 GHz的信號(hào),得到了載頻為3/6.5 GHz比特率為1.25 Gb/s的FSK信號(hào)并且傳輸了10 km。另外我們還將MZM偏置在了最小傳輸點(diǎn),得到了抑制載波的FSK信號(hào)。這種信號(hào)能夠克服因光纖產(chǎn)生的微波功率衰減效應(yīng)并且能夠?qū)崿F(xiàn)載頻倍頻。當(dāng)加在MZM上的微波信號(hào)的頻率是3/7 GHz時(shí),我們得到了倍頻的載頻為6/14 GHz并且比特率為2.5 Gb/s的FSK信號(hào)。4.我們提出了一種有多個(gè)可調(diào)獨(dú)立通帶的微波光子濾波器(MPF)。使用的光源是自發(fā)輻射的寬譜光源并被一個(gè)耦合器分成N路。其中1路被送入相位調(diào)制器另外N-1路被光延時(shí)線(xiàn)延時(shí)。這N路分支被合路之后再送入色散補(bǔ)償光纖然后在PD上進(jìn)行光電轉(zhuǎn)換。每一路延時(shí)的寬譜光與相位調(diào)制器產(chǎn)生的寬譜邊帶進(jìn)行拍頻就能產(chǎn)生出MPF的一個(gè)通帶。通過(guò)調(diào)諧寬譜光的延時(shí),通帶的中心波長(zhǎng)就能夠得到調(diào)諧。在實(shí)驗(yàn)上我們演示了兩個(gè)獨(dú)立可調(diào)的通帶,這兩個(gè)通帶能夠獨(dú)立地從DC調(diào)諧到30 GHz,通帶3 dB帶寬為250 MHz。我們也測(cè)試了MPF的穩(wěn)定性。在1.5小時(shí)之內(nèi),當(dāng)?shù)谝粋(gè)通帶的中心頻率是8 GHz時(shí),它的中心頻率和強(qiáng)度的變化分別為31 MHz和0.4 dB;當(dāng)?shù)诙䝼(gè)通帶的中心頻率在14 GHz時(shí),它的中心頻率和強(qiáng)度的變化分別為37 MHz和0.34 dB。另外我們還測(cè)試了MPF的SFDR。實(shí)驗(yàn)結(jié)果顯示中心頻率為1 GHz和4 GHz的通帶的SFDR分別為73.5 dB·Hz2/3和73 dB-Hz2/3.5.我們對(duì)一種基于相移光纖光柵(PS-FBG)的單通帶MPF進(jìn)行了線(xiàn)性化。當(dāng)一個(gè)相位調(diào)制的雙邊帶(DSB)信號(hào)被送入PS-FBG時(shí),如果一個(gè)邊帶落入PS-FBG反射帶的透射缺口,從PS-FBG反射的信號(hào)就會(huì)轉(zhuǎn)化成強(qiáng)度調(diào)制的單邊帶(SSB)信號(hào),從而產(chǎn)生MPF的一個(gè)通帶。通過(guò)調(diào)諧光載波的波長(zhǎng),通帶的中心頻率就能隨之調(diào)諧。通過(guò)利用鈮酸鋰相位調(diào)制器中的雙折射效應(yīng)和偏振分集接收機(jī),我們提高了這種MPF的SFDR。實(shí)驗(yàn)結(jié)果單通帶MPF的通帶寬度為80 MHz,調(diào)諧范圍為5.5 GHz。SFDR被提高了13.1 dB。6.基于雙平行馬赫曾德調(diào)制器(DPMZM)和數(shù)字信號(hào)處理算法,我們提出并驗(yàn)證了一種具有高轉(zhuǎn)換效率和高SFDR的微波光子混頻器。射頻信號(hào)和中頻信號(hào)分別加在DPMZM里的兩個(gè)平行的MZM上,使得射頻和中頻的隔離度趨近于無(wú)窮。當(dāng)DPMZM的三個(gè)偏置都偏置在最小傳輸點(diǎn)時(shí),光載波就能得到極大地抑制。因此對(duì)于PD來(lái)說(shuō),相同的輸入光功率條件下能夠產(chǎn)生更大的中頻信號(hào),因此轉(zhuǎn)換效率就得到了提高。初步的實(shí)驗(yàn)顯示轉(zhuǎn)換效率最高能達(dá)到-12.7 dB。另一方面,我們提出一種簡(jiǎn)單的DSP算法提高了混頻器的SFDR。這種算法不需要通常DSP算法所需要的系統(tǒng)的精確參數(shù)而只需要知道本振信號(hào)的調(diào)制深度。在實(shí)驗(yàn)上,通過(guò)該算法,混頻器的SFDR從101.5dB·Hz2/3提高到了114.5 dB·Hz4/5。7.我們提出了一個(gè)多縱模光纖激光器傳感器的復(fù)用方案。通過(guò)在光纖激光器諧振腔中插入兩個(gè)匹配的波分復(fù)用器(WDM)和一個(gè)半導(dǎo)體光放大器,實(shí)現(xiàn)了激光器的多波長(zhǎng)激射。對(duì)應(yīng)于每一個(gè)WDM通道都產(chǎn)生了一個(gè)波長(zhǎng),并且由于WDM通道的帶寬遠(yuǎn)大于縱模的自由譜程(FSR),因此每一個(gè)波長(zhǎng)都含有多個(gè)縱模。我們?cè)趦蓚(gè)WDM之間的光纖上加上傳感量。將激光器的多波長(zhǎng)輸出送入波分解復(fù)用器(DeWDM)將波長(zhǎng)分開(kāi)之后分別送入一個(gè)PD進(jìn)行拍頻解調(diào)就能解調(diào)出傳感信號(hào)。一個(gè)初步的實(shí)驗(yàn)復(fù)用了一個(gè)應(yīng)變傳感器和一個(gè)溫度傳感器。
[Abstract]:Microwave photonics is a cross discipline. The main problem is to produce and transmit microwave signals in the optical domain. The applications of microwave photonics include optical wireless communication systems, radar systems, light signal processing, sensing and other fields. The optical devices have wide bandwidth, light weight, high tunability, reconfiguration and anti electromagnetic drying. The microwave photon technology is considered to be able to overcome the "electronic bottleneck" problem effectively. Based on various external modulators, several microwave photonic systems have been proposed to solve the problems of microwave signal generation, transmission and processing. In addition, the microwave photons are applied to the multi longitudinal mode fiber laser sensing in this paper. The main work of this paper is as follows: 1. we propose an optical phase conjugate converter based on DFB laser (OPC) to compensate for the dispersion.DFB laser in the microwave photonic link to provide the pump source in the OPC and the medium that can also cause the four wave mixing (FWM), compared to the semiconductor optical amplifier and the optical amplifier. The OPC of the dispersion shifted fiber provides a more integrated scheme. The experimental results show that the dispersion in the 50.4 km microwave photonic link is compensated and the compensation bandwidth is up to 33 GHz through this OPC, and the non stray dynamic range (SFDR) also improves the 12.6dB Hz2/3. dispersion point 9.2 GHz, 125 Mb/s amplitude in the microwave photonic link. The transmission performance of the shift keying signal has also been improved by.2.. We propose a total duty ratio triangular wave generator based on the optoelectronic oscillator (OEO), which determines the repetition frequency of the triangular wave pulse. By offset the Maher Ceng De modulator (MZM) in the OEO at the positive point, the small signal gain of the OEO is maximized simultaneously. The even subharmonic is suppressed. The amplitude of the base wave is 9 times the amplitude of the three harmonic by precisely controlling the small signal gain of the OEO. The electrical signal generated by the photodetector (PD) can produce a triangular wave pulse after a 90 degree phase shifter. In the experiment, the frequency of the OEO can be tuned from 2 GHz to 10 GHz, and the phase noise of OEO is at 10 kHz. -101.7 dBc/Hz. we also tested the trigonometric waves with repeated frequencies of 3 GHz and 6 GHz, and their root mean square errors with ideal triangular waves are 6.4927e-4 and 9.0932e-4.3. based on polarization modulator and dual polarization modulator. We propose a new type of microwave frequency shift keying (FSK) generator, in which the polarization modulator is used to modulate the input line bias. The polarization state of the light makes the polarization state of the output light switch in two orthogonal directions, that is, the polarization keying (PolSK) signal is produced. The dual polarization modulator consists of two sub MZM of polarization multiplexing. The two sub MZM are separately added to the different frequency microwave signals. The PolSK signals produced by the polarizer are sent to the dual polarization modulator. The over polarization controller aligns the axis of PolSK with the spindle of the dual polarization modulator, and the PolSK signal can be converted into a microwave FSK signal. In the experiment we offset the sub MZM at the positive point and add 3 GHz and 6.5 GHz signals respectively, and the FSK signal with a 3/6.5 GHz bit rate of 1.25 Gb/s is obtained and the 10 km. is transmitted. In addition, we will also MZM the MZM. It is biased at the minimum transmission point and gets the FSK signal to suppress the carrier. This signal can overcome the microwave power attenuation effect caused by the fiber and can achieve carrier frequency doubling. When the frequency of the microwave signal added to the MZM is 3/7 GHz, we get the FSK signal.4. with a frequency multiplier of 6/14 GHz and a bit rate of 2.5 Gb/s. We have proposed a microwave photon filter (MPF) with multiple adjustable independent passbands. The light source used is a broad spectrum source of spontaneous radiation and is divided into a N path by a coupler. 1 of them are sent into the phase modulator and the N-1 road is delayed by the optical delay line. The branch of the N road is then sent to the dispersion compensated fiber and then on the PD. Electrical conversion. A wide spectral band of wide spectral light generated by each time delay and a phase modulator produced by the phase modulator can produce a passband of the MPF. By tuning the delay of the broad spectrum light, the central wavelength of the passband can be tuned. In the experiment we demonstrate two independent tunable passbands, which can be tuned from DC to 30 G independently. Hz, with a band 3 dB bandwidth of 250 MHz., we also tested the stability of MPF. Within 1.5 hours, when the central frequency of the first pass is 8 GHz, its central frequency and strength changes are 31 MHz and 0.4 dB, respectively, when the central frequency of the second passband is 14 GHz, the changes in the center frequency and intensity are 37 MHz and 0.34 dB. respectively. In addition, we also tested the SFDR. experimental results of MPF showing that the SFDR of a passband with a center frequency of 1 GHz and 4 GHz is 73.5 dB. Hz2/3 and 73 dB-Hz2/3.5., respectively. We linearize a single pass band MPF based on phase shift fiber Bragg grating (PS-FBG). Falling into the transmission gap of the PS-FBG reflector, the signal reflected from the PS-FBG will be converted into a intensity modulated single band (SSB) signal, thus producing a passband of the MPF. By tuning the wavelength of the optical carrier, the central frequency of the passband can be tuned accordingly. By using the birefringence effect and polarization diversity receiver in the lithium niobate phase regulator, I We improved the MPF's SFDR. experiment results with the band width of 80 MHz, and the tuning range of 5.5 GHz.SFDR was improved by 13.1 dB.6. based on the dual parallel Maher Ceng De modulator (DPMZM) and digital signal processing algorithm. We proposed and verified a microwave photonic mixer with high conversion efficiency and high SFDR. If the intermediate frequency signals are added to the two parallel MZM in the DPMZM, the isolation of the radio frequency and intermediate frequency is close to infinity. When the three biases of the DPMZM are biased at the minimum transmission point, the optical carrier can be greatly suppressed. Therefore, for the PD, the same input light power can produce a larger intermediate frequency signal, thus conversion. Efficiency is improved. Preliminary experiments show that the maximum conversion efficiency can reach -12.7 dB. on the other hand, we propose a simple DSP algorithm to improve the mixer's SFDR., which does not require the exact parameters of the system required by the usual DSP algorithm but only needs to know the modulation depth of the signal signal. The method, the SFDR of the mixer is improved from 101.5dB to Hz2/3 to 114.5 dB. Hz4/5.7.. We put forward a multiplexing scheme of multi longitudinal mode fiber laser sensor. By inserting two matched wave division multiplexers (WDM) and a semiconductor optical amplifier in the resonator of the fiber laser, the laser multi wavelength lasing is realized. Each WDM channel produces a wavelength, and because the bandwidth of the WDM channel is much larger than the free spectrum of the longitudinal mode (FSR), each wavelength contains multiple longitudinal modes. We add the sense of upload to the fiber between two WDM. The multiwavelength output of the laser is sent to the wave decomposition reagent (DeWDM) and the wavelength is separated into a P respectively. D can demodulate the sensing signal by beat frequency demodulation. A preliminary experiment multiplexed a strain sensor and a temperature sensor.
【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TN015
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱燦,邱琪;高速光突發(fā)模式外調(diào)制器驅(qū)動(dòng)電路設(shè)計(jì)[J];半導(dǎo)體光電;2005年05期
2 ;高功率紅外調(diào)制器[J];激光與光電子學(xué)進(jìn)展;1977年08期
3 陳亦男;張曉青;李東;;外調(diào)制器直流偏壓與輸出光功率特性分析[J];北京信息科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年02期
4 馬曉紅,于晉龍,楊恩澤,王林;2.5Gb/s光外調(diào)制器及驅(qū)動(dòng)器[J];半導(dǎo)體光電;1999年01期
5 鄒暉;胡毅;田軍;許遠(yuǎn)忠;;M-Z外調(diào)制器最佳偏置點(diǎn)穩(wěn)定控制[J];光通信研究;2008年03期
6 胡忠勝,陳淑芬,秦秉坤,呂昕;外調(diào)制器啁啾對(duì)10 Gbit/s色散補(bǔ)償系統(tǒng)的影響[J];光通信研究;2002年02期
7 張春芽,劉錦高,段杰羿;馬赫-曾德?tīng)柾庹{(diào)制器線(xiàn)性化技術(shù)[J];光通信研究;1998年06期
8 唐鑫凌;;基于C8051F005的光外調(diào)制器控制系統(tǒng)設(shè)計(jì)[J];湖南科技學(xué)院學(xué)報(bào);2009年04期
9 李剛毅;;M-Z型LiNbO_3外調(diào)制器的優(yōu)化設(shè)計(jì)分析[J];半導(dǎo)體光電;2010年02期
10 商建明;王道斌;劉延君;元麗華;雷景麗;李曉曉;侯尚林;;基于外調(diào)制器的可控八倍頻光載毫米波生成技術(shù)研究[J];光學(xué)學(xué)報(bào);2014年05期
相關(guān)會(huì)議論文 前1條
1 姜鵬;陸威;王騏;;半導(dǎo)體激光雷達(dá)的外調(diào)制器綜述[A];2007年先進(jìn)激光技術(shù)發(fā)展與應(yīng)用研討會(huì)論文集[C];2007年
相關(guān)博士學(xué)位論文 前1條
1 黃龍;基于外調(diào)制器的微波光子技術(shù)在微波與傳感系統(tǒng)中的應(yīng)用[D];南京大學(xué);2016年
相關(guān)碩士學(xué)位論文 前3條
1 高永勝;RoF系統(tǒng)中基于外調(diào)制器的高效調(diào)制技術(shù)研究[D];西安電子科技大學(xué);2014年
2 郝艷飛;外調(diào)制器一體化和自動(dòng)偏置控制算法的研究[D];北京郵電大學(xué);2014年
3 王繼博;高階光調(diào)制發(fā)射機(jī)的研究及實(shí)現(xiàn)[D];北京郵電大學(xué);2015年
,本文編號(hào):2042646
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2042646.html