太赫茲半導(dǎo)體探測器、發(fā)射器和功率放大器的制備及性能研究
本文選題:太赫茲半導(dǎo)體器件 + 自開關(guān)二極管; 參考:《山東大學(xué)》2017年博士論文
【摘要】:太赫茲波是指頻率為0.1~10 THz(1 THz = 1000 GHz)的電磁波輻射,其頻率介于微波和紅外之間。由于以前產(chǎn)生和探測太赫茲頻率的電磁輻射無論在電子學(xué)還是在光學(xué)領(lǐng)域中都有非常大的困難,導(dǎo)致人們對這個頻段的電磁波的性質(zhì)認(rèn)識和應(yīng)用都非常少,所以太赫茲頻段又常被稱為"太赫茲空隙"(THz gap)。最近十幾年,隨著被發(fā)現(xiàn)在國防、超高速無線通信、物相分析、宇宙光譜學(xué)和安檢成像等領(lǐng)域有非常重要的潛在應(yīng)用,太赫茲波迅速得到了大家的廣泛重視。一直以來嚴(yán)重阻礙人們對于太赫茲波的研究和應(yīng)用的最大問題是缺乏合適的太赫茲源和探測器。目前已有的太赫茲設(shè)備或器件大多存在體積龐大、造價昂貴、需要極低的工作溫度等問題,無法大規(guī)模應(yīng)用。近年來,得益于微電子領(lǐng)域半導(dǎo)體材料的生長技術(shù)和微納加工工藝的飛速發(fā)展,利用高速半導(dǎo)體器件實現(xiàn)太赫茲的發(fā)射和探測已經(jīng)成為可能。半導(dǎo)體太赫茲器件具有成本低、體積小、功耗低、效率高、可集成等諸多優(yōu)勢,因而高性能半導(dǎo)體太赫茲器件的研制被大家公認(rèn)為是未來能夠推動太赫茲技術(shù)發(fā)展與應(yīng)用的重要動力。本論文針對目前國內(nèi)外太赫茲半導(dǎo)體器件研究、發(fā)展的現(xiàn)狀,以新型平面半導(dǎo)體器件為主要研究方向,利用微納加工技術(shù),成功制備了太赫茲平面半導(dǎo)體探測器、發(fā)射器和功率放大器,并系統(tǒng)的研究了器件的工作原理、直流和高頻特性以及對器件性能優(yōu)化提升的方法。主要研究內(nèi)容如下:1)制備了高性能太赫茲平面半導(dǎo)體探測器-自開關(guān)二極管(SSD),并研究了提高其響應(yīng)度的方法。在高遷移率半導(dǎo)體材料上制備的SSD由于寄生電容小,工作頻率最高可達(dá)1.5 THz,但是器件響應(yīng)度不高。本論文研究了通過在SSD溝槽中填充電介質(zhì)材料的方法提高SSD響應(yīng)度,并對比了 PMMA和Si0_2兩種介質(zhì)材料對器件直流和高頻性能的影響。實驗結(jié)果發(fā)現(xiàn)在用PMMA填充SSD溝槽后,器件直流I-V曲線中的開關(guān)比顯著提高、器件的線性度明顯改善、器件的高頻響應(yīng)度有大幅度提升,測得的最高響應(yīng)度達(dá)到1650mV/mW,比未填充PMMA的SSD提高了一個數(shù)量級。2)研究了利用干法刻蝕制備SSD的工藝以及刻蝕掩膜對器件性能的影響。首次提出了使用無損傷的熱蒸發(fā)法沉積的一氧化硅(SiO)做刻蝕掩膜來提高器件高頻性能的方法。SSD的整流特性依賴于寬度只有幾十納米的溝道和溝槽。之前器件制備時主要利用濕法工藝刻蝕溝槽,因此存在重復(fù)性差,邊緣粗糙,側(cè)壁不垂直等問題。雖然也有利用干法刻蝕制備SSD的報道,但器件性能普遍不佳。本論文中通過分析發(fā)現(xiàn)刻蝕掩膜對于干法刻蝕制備的SSD的性能有明顯的影響。在對比研究旋涂法制備的有機(jī)光刻膠掩膜和等離子體方法沉積的無機(jī)掩膜所存在的問題后,我們首次提出了用熱蒸發(fā)的SiO做微納加工的干法刻蝕掩膜。熱蒸發(fā)的SiO晶粒小、平整度好,耐刻蝕能力強(qiáng),非常適合做刻蝕掩膜材料。更重要的是和其它無機(jī)掩膜采用的濺射或等離子體增強(qiáng)化學(xué)氣相沉積(PECVD)等方法比,SiO的熱蒸發(fā)沉積方式不會對半導(dǎo)體材料表面造成損傷。因此使用熱蒸發(fā)的SiO做刻蝕掩膜可以顯著提高載流子靠近表面(如二維電子氣)的半導(dǎo)體器件的性能。實驗中通過與旋涂的PMMA和濺射的Si0_2做對比,發(fā)現(xiàn)利用熱蒸發(fā)的SiO刻蝕掩膜制備的SSD不但刻蝕圖形形貌良好,器件的高頻性能也有明顯的提高。用SiO掩膜制備的器件在220 GHz的頻率下的響應(yīng)度比用另外兩種掩膜制備的器件的響應(yīng)度高1到2個量級,等效噪音功率低超過1個量級。通過對制備的Hallbar做霍爾測試,發(fā)現(xiàn)用SiO掩膜刻蝕的溝道中的載流子的濃度和遷移率都高于用濺射Si0_2掩膜刻蝕的溝道,尤其是載流子遷移率高了一倍。這充分說明了熱蒸發(fā)法沉積的SiO在提升高頻微納器件性能方面具有明顯的幫助作用。3)研究了 InGaAs SSD表面氧化層的處理對溝道表面耗盡區(qū)寬度和費米能級釘扎效應(yīng)的影響。InGaAs材料由于表面氧化等原因,存在大量的表面態(tài),這些表面態(tài)對納米寬度的SSD溝道有直接的影響。本論文通過測試SSD的電導(dǎo)率與溝道寬度的關(guān)系,得出了 SSD表面耗盡區(qū)寬度為46 nm。進(jìn)一步研究發(fā)現(xiàn)用酸去除表面氧化層后表面耗盡區(qū)寬度會增加至74 nm,而用氧等離子體對表面進(jìn)行氧化處理后耗盡區(qū)寬度則會降低至35 nm。這說明InGaAs材料表面耗盡層寬度會隨半導(dǎo)體表面狀態(tài)的改變而發(fā)生明顯變化,分析發(fā)現(xiàn)這種變化與表面態(tài)密度的改變以及費米能級釘扎位置的移動有關(guān)。4)研究了 GaN納米器件的加工工藝,并成功制備了基于GaN SSD的太赫茲探測器。GaN材料作為新一代寬禁帶半導(dǎo)體的代表,具有耐高溫、耐擊穿、耐輻射等優(yōu)點,在太空、軍事等領(lǐng)域都有巨大的應(yīng)用前景。SSD具有結(jié)構(gòu)簡單、工作頻率高的特點。將兩者結(jié)合可以充分發(fā)揮其各自的優(yōu)勢。本論文研究了 GaN SSD的制備工藝和器件性能。利用熱蒸發(fā)的SiO做掩膜的干法刻蝕工藝實現(xiàn)了寬度僅30 nm,深度達(dá)135 nm的SSD溝槽,而且刻蝕邊緣清晰平直,底部平整。GaN SSD的高頻測試結(jié)果證實其工作頻率超過220 GHz,而且具有良好的線性響應(yīng)度,證明GaNSSD可以作為太赫茲探測器。本論文同時也對GaN SSD未來在器件性能優(yōu)化方面的研究方向做了論述。5)設(shè)計和制備了基于平面耿氏二極管(PGD)的高頻大功率太赫茲源,并提出了一種基于共平面波導(dǎo)(CPW)的二維諧振腔。半導(dǎo)體異質(zhì)結(jié)PGD是近十年才被發(fā)現(xiàn)其優(yōu)勢特點并開始研究的。目前報道的器件基頻工作頻率已超過300GHz,遠(yuǎn)超傳統(tǒng)垂直耿氏二極管,有望在未來成為廣泛應(yīng)用的太赫茲半導(dǎo)體發(fā)射器。但是目前PGD的發(fā)射功率仍然偏低。本論文通過研究優(yōu)化半導(dǎo)體異質(zhì)結(jié)襯底結(jié)構(gòu)以及器件的結(jié)構(gòu)和制備工藝,大幅度提升了器件的微分負(fù)阻效應(yīng)。器件在微分負(fù)阻區(qū)電流峰谷比達(dá)到1.25,超過了文獻(xiàn)報道的最高值。同時借助于三維電磁場仿真,在本論文中提出了一種基于CPW的二維諧振腔。將其于PGD上后,成功制備出發(fā)射頻率超過100 GHz,發(fā)射功率遠(yuǎn)超文獻(xiàn)報道,達(dá)到0.8mW的太赫茲發(fā)射源。這是首次將PGD的發(fā)射功率提高到毫瓦量級。另外發(fā)射器的相噪音和頻率的穩(wěn)定性等指標(biāo)也得到了明顯的提升。測得的相噪音只有-107 dBc/Hz,比文獻(xiàn)報道的同類型器件低30 dB。發(fā)射頻率隨直流偏壓的漂移只有0.21GHz/V,達(dá)到領(lǐng)先水平。6)探究了 GaN PGD的器件制備工藝并討論了 GaN耿氏二極管存在問題和未來的發(fā)展方向。GaN材料由于帶隙寬、耐高溫、耐擊穿,載流子飽和漂移速率高,非常適合用于制備高頻大功率耿氏器件。本論文探究了 GaN PGD的制備工藝。制備的GaN PGD在電場強(qiáng)度達(dá)到7 V/μm后,電流隨電壓增長速度開始明顯放慢,表現(xiàn)出一定程度的飽和現(xiàn)象。GaN基太赫茲源的研制是世界難題,本論文針對GaN PGD存在的問題做了一些研究,并對未來的相關(guān)研究提出了建議。7)首次提出利用平面耿氏器件做太赫茲功率放大器,成功制備了工作頻率超過110GHz的平面功率放大器,并系統(tǒng)研究了放大器的各項性能。太赫茲系統(tǒng)離不開功率放大器,基于高遷移率場效應(yīng)晶體管(HEMT)的功率放大器雖然目前截止頻率已經(jīng)達(dá)到0.6 THz,但是要求器件溝道長度縮短至25 nm左右以降低RC時間和電子渡越時間。如此嚴(yán)苛的要求使得器件的制備變的極其困難,也因此器件價格非常昂貴,難以大規(guī)模應(yīng)用。其它的功率放大器,包括異質(zhì)結(jié)雙極性晶體管(HBT)、共振隧穿二極管(RTD)等都存在大功率情況下線性度差,信號失真的問題。本論文中首次提出了一種新型太赫茲功率放大器-平面耿氏放大器。它利用耿氏器件的微分負(fù)阻效應(yīng)實現(xiàn)太赫茲功率放大。通過改進(jìn)器件結(jié)構(gòu)及工藝,提高了器件的微分負(fù)阻效應(yīng),在InGaAs襯底上制備的平面耿氏放大器增益達(dá)到17 dB,截止頻率超過110 GHz。而且器件功率特性良好,1 dB壓縮點為0 dBm,遠(yuǎn)超HBT和RTD。研究還發(fā)現(xiàn)平面耿氏放大器的最佳工作頻率與溝道長度成反比,溝道長度為300nm的器件的工作頻率可達(dá)0.6THz,這比具有相同頻率的HEMT器件的溝道長度大10倍左右。大的溝道尺寸可以明顯降低器件制備的難度,從而大幅度降低器件的成本。另外對平面耿氏放大器具有功率密度低、散熱好的優(yōu)勢,因此工作穩(wěn)定性也更好。實驗中在沒有對器件采取襯底減薄和加裝散熱片等垂直耿氏器件必須使用的降溫措施的情況下,器件連續(xù)工作2小時仍然保持功率增益為16 dB,波動小于0.8 dB。8)制備二維側(cè)柵晶體管(SGT)并對器件的工作機(jī)理、等效電路、直流轉(zhuǎn)移和輸出特性等做了研究。SGT在結(jié)構(gòu)和工作機(jī)理上與SSD有非常大的相似性。通過對SGT的研究可以獲得如閾值電壓、開關(guān)比、載流子遷移率、缺陷態(tài)密度、溝道電容等一些僅僅通過對SSD的測量和分析很難獲得的參數(shù),而且利用SGT可以有針對性的研究這些參數(shù)與器件結(jié)構(gòu)、制備工藝等的關(guān)系,這對于提高SSD的性能有重要的指導(dǎo)意義。本論文中成功制備了溝道寬度為90~150nm的SGT,測得溝道寬度為135 nm的SGT的閾值電壓為-0.8 V,器件的最佳工作點為0.5 V,最大跨導(dǎo)為24.1 μS。
[Abstract]:The terahertz wave refers to the electromagnetic wave radiation of 0.1 ~ 10 THz (1 THz = 1000 GHz). Its frequency is between microwave and infrared. Since the electromagnetic radiation produced and detected in the terahertz frequency is very difficult both in electronics and in the optical field, people understand the properties of the electromagnetic wave in this band. Terahertz (THz gap) is often called terahertz (terahertz). In the last decade, there are very important potential applications in the fields of national defense, ultra high speed wireless communication, phase analysis, cosmic spectroscopy and security imaging. The terahertz wave has been widely paid attention to. It has been seriously hindered. The biggest problem for the research and application of the terahertz wave is the lack of appropriate terahertz sources and detectors. Most of the existing terahertz devices or devices exist in large volume, expensive and very low working temperature. In recent years, the growth technology of semiconductor materials in microelectronics has been benefited. With the rapid development of operation and micro nano processing technology, it is possible to realize the emission and detection of terahertz by high-speed semiconductor devices. The semiconductor terahertz device has many advantages, such as low cost, small volume, low power consumption, high efficiency, and can be integrated. The development and application of terahertz technology is important. In this paper, the development of terahertz semiconductor devices at home and abroad is the main research direction. Using the new type of planar semiconductor devices as the main research direction, the terahertz semiconductor detector, emitter and power amplifier are successfully prepared by using micro nano technology. The principle of the device, the characteristics of DC and high frequency and the optimization of the performance of the device. The main research contents are as follows: 1) the high performance terahertz planar semiconductor detector - self switched diode (SSD) is prepared and the method to improve the response degree is studied. The SSD of the high transfer rate semiconductor material is small because of the small parasitic capacitance. The working frequency is up to 1.5 THz, but the response degree of the device is not high. In this paper, the response degree of the SSD is improved by filling the charging medium in the SSD groove, and the influence of the two dielectric materials on the DC and high frequency performance of the devices is compared. The experimental results show that the DC I-V curve of the device after filling the SSD groove with PMMA is found. The switch ratio of the device is greatly improved, the linearity of the device is obviously improved, the high frequency response degree of the device is greatly improved, the maximum response of the device is up to 1650mV/mW, and an order of magnitude.2 is higher than that of the unfilled PMMA SSD. The process of using dry etching to prepare the SSD and the effect of the etching mask on the performance of the device are studied. The method of using SiO to improve the high frequency performance of the device is to improve the high frequency performance of the device. The rectification characteristic of.SSD depends on the channel and groove with a width of only a few tens of nanometers. However, there are also reports of the use of dry etching to prepare SSD, but the performance of the devices is generally poor. In this paper, it is found that the etching mask has an obvious effect on the performance of SSD prepared by dry etching. After comparing the problems of organic photoresist mask prepared by spin coating and the problems of the plasma method deposited inorganic masks, we have found that A dry etching mask with heat evaporated SiO for micro nano processing is proposed for the first time. The heat evaporated SiO has small grain, good evenness, strong corrosion resistance, and is very suitable for etching masks. More importantly, the ratio of sputtering or plasma enhanced chemical vapor deposition (PECVD) to other inorganic masks, and the thermal evaporation deposition of SiO There is no damage to the surface of the semiconductor material. Therefore, the performance of a semiconductor device with a carrier near the surface (such as two-dimensional electron gas) can be significantly improved by using a thermal evaporated SiO as an etching mask. In the experiment, the SSD produced by the SiO etching mask using the hot steamed SiO is not only etched by comparison with the Si0_2 of the spin coating and sputtering. The high frequency performance of the device is obviously improved. The response degree of the device prepared by the SiO mask at 220 GHz is 1 to 2 orders of magnitude higher than that of the other two kinds of masks, and the equivalent noise power is lower than 1 orders of order. The Holzer test of the prepared Hallbar is used to find the channel etching channel with the SiO mask. The concentration and mobility of the carrier is higher than that of the channel etched by the sputtering Si0_2 mask, especially the mobility of the carrier. This shows that the SiO deposited by thermal evaporation has a significant help in improving the performance of the high frequency micro devices. The treatment of the surface depletion of the InGaAs SSD surface to the channel surface depletion has been studied. The effect of zone width and Fermi energy level pinning effect on.InGaAs material has a large number of surface states due to surface oxidation. These surface states have a direct influence on the SSD channel of nanoscale width. This paper has found that the width of the SSD surface depletion region is 46 nm. by testing the relationship between the conductivity of the SSD and the channel width. The width of the surface depletion region will increase to 74 nm after the surface oxidation layer is removed with acid, and the depletion region width will decrease to 35 nm. after the oxidation treatment of the surface with oxygen plasma. It shows that the width of the surface depletion layer of the InGaAs material will change obviously with the change of the surface state of the semiconductor, and the analysis shows that the change and the surface density of the surface are found. The processing technology of GaN nano devices is studied by the change of.4 and the movement of Fermi level pinning position. The.GaN material of the terahertz detector based on GaN SSD is successfully prepared as the representative of a new generation wide band gap semiconductor, which has high temperature resistance, breakdown resistance, radiation resistance and so on. It has great application in space, military and other fields. .SSD has the characteristics of simple structure and high working frequency. Combining the two can give full play to their respective advantages. This paper studies the preparation technology and device performance of GaN SSD. The dry etching process of the mask by thermal evaporation of SiO has realized a SSD groove with a width of only 30 nm and a depth of 135 nm, and the etching edge is clear and flat. Bottom of the etching is clear and flat. The high frequency test results of the flat.GaN SSD confirm that the working frequency is more than 220 GHz, and has a good linear response degree, which proves that GaNSSD can be used as a terahertz detector. This paper also discusses the direction of GaN SSD in the future research direction of the device performance optimization, and sets up and prepared the planar Gunn diode (PGD). High frequency and high power terahertz source, a two-dimensional resonant cavity based on common plane waveguide (CPW) is proposed. Semiconductor heterojunction PGD is discovered in recent ten years and has been discovered. The frequency of basic frequency of devices is over 300GHz, far beyond the traditional vertical Gunn diode, which is expected to be widely used in the future. The transmission power of PGD is still low. In this paper, the differential negative resistance effect of the device is greatly improved by optimizing the structure of the semiconductor heterojunction substrate and the structure and fabrication process of the device. The current peak to valley ratio of the differential negative resistance region is up to 1.25, which exceeds the highest value reported in the literature. With the aid of three-dimensional electromagnetic simulation, a two-dimensional resonant cavity based on CPW is proposed in this paper. After it is on PGD, the emission frequency is more than 100 GHz and the emission power is far beyond the literature to reach the terahertz emission source of 0.8mW. This is the first time that the emission power of PGD is raised to milliwatts. And the phase noise of the emitter and the phase noise of the emitter. The frequency stability and other indexes have been improved obviously. The measured phase noise is only -107 dBc/Hz, which is 30 dB. lower than the same type device reported in the literature. It is only 0.21GHz/V to reach the leading level of.6.) the preparation process of GaN PGD is explored and the existence of GaN Gunn diode is discussed and the future is discussed. Due to the wide band gap, high temperature resistance, breakdown resistance and high carrier saturation drift rate, the development direction.GaN is very suitable for the preparation of high frequency high power Gunn devices. This paper explores the preparation process of GaN PGD. After the electric field strength reaches 7 V/ mu m, the current of the prepared GaN begins to slow down obviously with the growth rate of the voltage, showing a certain degree. The development of the.GaN based terahertz source is a world problem. This paper has done some research on the existing problems of GaN PGD, and proposed a suggestion.7 for the related research in the future. It is the first time that a plane Geng device is used as a terahertz power amplifier, and a planar power amplifier with a working frequency exceeding 110GHz has been successfully prepared and the system has been successfully prepared. The performance of the amplifier is studied. The terahertz system can not be separated from the power amplifier. The power amplifier based on the high mobility field effect transistor (HEMT) has the current cut-off frequency of 0.6 THz, but the channel length of the device is shortened to about 25 nm to reduce the time of RC and the time of electron crossing. The preparation of parts is extremely difficult, so the device is very expensive and difficult to be applied in large scale. Other power amplifiers, including heterojunction bipolar transistors (HBT), resonant tunneling diode (RTD), etc., have the problem of low linearity and signal distortion under high power conditions. In this paper, a new type of terahertz power amplifier is proposed for the first time. It uses the differential negative resistance effect of the Gunn device to achieve the terahertz power amplification. The differential negative resistance effect of the device is improved by improving the device structure and process. The gain of the planar Gunn amplifier on the InGaAs substrate is 17 dB, the cut-off frequency is over 110 GHz. and the power characteristic of the device is good, 1 dB The compression point is 0 dBm. The far super HBT and RTD. studies also find that the optimal operating frequency of the planar Gunn amplifier is inversely proportional to the channel length, and the operating frequency of the channel length of 300nm can reach 0.6THz, which is about 10 times larger than the channel length of the HEMT device with the same frequency. The large channel size can significantly reduce the difficulty of the device preparation. Furthermore, the cost of the device is greatly reduced. In addition, the plane Gunn amplifier has the advantages of low power density and good heat dissipation, so the work stability is better. In the experiment, in the case of the cooling measures must be used for the vertical Gunn device, such as the substrate thinning and the installation of the radiator, the device still works for 2 hours. With a power gain of 16 dB and a fluctuation less than 0.8 dB.8) a two-dimensional grid transistor (SGT) is prepared and the working mechanism, equivalent circuit, DC transfer and output characteristics of the device are studied. The structure and working mechanism of.SGT are very similar to that of SSD. By the study of SGT, the threshold voltage, the switch ratio, the carrier mobility can be obtained. Some parameters such as defect density, channel capacitance, etc. are difficult to obtain through the measurement and analysis of SSD, and the relationship between these parameters and device structure and preparation process can be studied by SGT, which is of great significance for improving the performance of SSD. In this paper, the channel width of 90 to 150nm is successfully prepared in this paper. GT, the threshold voltage of SGT with a channel width of 135 nm is -0.8 V, the optimum operating point of the device is 0.5 V, and the maximum transconductance is 24.1 S..
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TN303
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張剛;;淺談太赫茲波技術(shù)及其應(yīng)用[J];科技廣場;2007年11期
2 戚祖敏;;太赫茲波在軍事領(lǐng)域中的應(yīng)用研究[J];紅外;2008年12期
3 曹鐵嶺;姚建銓;鄭義;;基于法布里-珀羅干涉儀的太赫茲波波長測試方法[J];光學(xué)儀器;2008年02期
4 牧凱軍;張振偉;張存林;;太赫茲科學(xué)與技術(shù)[J];中國電子科學(xué)研究院學(xué)報;2009年03期
5 趙國忠;;太赫茲科學(xué)技術(shù)的發(fā)展與實驗室建設(shè)[J];現(xiàn)代科學(xué)儀器;2009年03期
6 董慶楠;;淺談太赫茲波的特點及其在國民經(jīng)濟(jì)中的應(yīng)用[J];科協(xié)論壇(下半月);2009年07期
7 魏華;;太赫茲探測技術(shù)發(fā)展與展望[J];紅外技術(shù);2010年04期
8 張希成;;太赫茲射線——新的射線[J];光學(xué)與光電技術(shù);2010年04期
9 岳楨干;;美國倫斯勒理工學(xué)院太赫茲研究中心的遠(yuǎn)距離太赫茲探測技術(shù)研究[J];紅外;2011年05期
10 岳楨干;;太赫茲波遙感技術(shù)簡介[J];紅外;2011年06期
相關(guān)會議論文 前10條
1 張存林;牧凱軍;;太赫茲波譜與成像[A];第八屆全國光學(xué)前沿問題討論會論文集[C];2009年
2 張敏;權(quán)潤愛;阮雙琛;梁華偉;蘇紅;;連續(xù)太赫茲波在產(chǎn)品分布檢測中的應(yīng)用[A];2009年全國微波毫米波會議論文集(下冊)[C];2009年
3 戴厚梅;劉勁松;;空氣中產(chǎn)生太赫茲波過程的研究進(jìn)展[A];第十三屆全國紅外加熱暨紅外醫(yī)學(xué)發(fā)展研討會論文及論文摘要集[C];2011年
4 李喜來;徐軍;曹付允;朱桂芳;侯洵;;太赫茲波軍事應(yīng)用研究[A];中國光學(xué)學(xué)會2006年學(xué)術(shù)大會論文摘要集[C];2006年
5 張存林;趙國忠;;太赫茲波的應(yīng)用[A];中國光學(xué)學(xué)會2006年學(xué)術(shù)大會論文摘要集[C];2006年
6 張存林;趙國忠;沈京玲;張巖;;太赫茲波譜與成像[A];第七屆全國光學(xué)前沿問題討論會論文摘要集[C];2007年
7 范文慧;;太赫茲波譜成像技術(shù)與應(yīng)用[A];第十屆全國光電技術(shù)學(xué)術(shù)交流會論文集[C];2012年
8 趙國忠;梁衛(wèi)華;張存林;楊國楨;;太赫茲波傳播特性及成像研究[A];第七屆全國光學(xué)前沿問題討論會論文摘要集[C];2007年
9 郭瀾濤;牧凱軍;左劍;張振偉;張存林;;爆炸物的太赫茲超寬帶光譜研究[A];中國光學(xué)學(xué)會2011年學(xué)術(shù)大會摘要集[C];2011年
10 孟增睿;張偉斌;;太赫茲光譜探測技術(shù)在安全領(lǐng)域的研究進(jìn)展[A];第二屆全國危險物質(zhì)與安全應(yīng)急技術(shù)研討會論文集[C];2013年
相關(guān)重要報紙文章 前10條
1 本報記者 袁志勇;張巖:借太赫茲波“穿墻透視”[N];科技日報;2013年
2 本報記者 江世亮 邱德青 實習(xí)生 王禹;太赫茲:又一場“前沿革命”[N];文匯報;2006年
3 記者 任海軍;有設(shè)備會“透視”可“分辨”爆炸物[N];新華每日電訊;2010年
4 常麗君;太赫茲脈沖可提高砷化鎵電子密度[N];科技日報;2011年
5 本報記者 繆琴;神奇“太赫茲”改變你生活[N];成都日報;2006年
6 常麗君;科學(xué)家開發(fā)出石墨烯太赫茲設(shè)備樣機(jī)[N];科技日報;2012年
7 ;英“遠(yuǎn)程透視眼”能看穿衣服,但不看“隱私”[N];新華每日電訊;2008年
8 實習(xí)記者 唐燾逸;反暴恐利器:國內(nèi)首臺太赫茲安檢儀發(fā)布[N];中國航空報;2014年
9 劉霞;集成太赫茲收發(fā)器在美問世[N];科技日報;2010年
10 本報記者 侯鐵中;太赫茲研究的中國高度[N];科技日報;2014年
相關(guān)博士學(xué)位論文 前10條
1 王偉濤;新型太赫茲參量源研究[D];山東大學(xué);2015年
2 張彪;太赫茲雷達(dá)成像算法研究[D];電子科技大學(xué);2015年
3 黃海漩;基于二元光學(xué)矢量理論的太赫茲亞波長功能器件研究[D];深圳大學(xué);2015年
4 李輝;基于連續(xù)太赫茲波檢測人體呼吸運動的研究[D];第四軍醫(yī)大學(xué);2015年
5 茍君;基于氧化釩輻射熱計的室溫太赫茲探測器研究[D];電子科技大學(xué);2014年
6 賴偉恩;太赫茲時域光譜與新穎太赫茲薄膜器件的研究[D];電子科技大學(xué);2015年
7 陳琦;幾種新型微波無源器件及太赫茲濾波器的研究[D];電子科技大學(xué);2014年
8 王蓉蓉;大氣水凝物中THz波和紅外波的輻射傳輸特性[D];西安電子科技大學(xué);2015年
9 劉建軍;太赫茲時域光譜技術(shù)在轉(zhuǎn)基因物質(zhì)檢測上的識別方法研究[D];西安電子科技大學(xué);2015年
10 劉項;基于金屬表面等離子激元的太赫茲波段功能器件研究[D];浙江大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 馬欣然;木材的太赫茲波光譜特性及參數(shù)提取算法研究[D];東北林業(yè)大學(xué);2015年
2 唐關(guān)琦;大能量納秒太赫茲參量源研究[D];山東大學(xué);2015年
3 李進(jìn);基于太赫茲時域光譜技術(shù)的水蒸汽傳輸特性研究[D];西南科技大學(xué);2015年
4 王磊;亞波長金屬微結(jié)構(gòu)對太赫茲波偏振調(diào)制作用的研究[D];復(fù)旦大學(xué);2014年
5 吳三統(tǒng);基于單片集成二極管技術(shù)的太赫茲倍頻鏈路研究[D];電子科技大學(xué);2014年
6 孫振龍;太赫茲快速成像系統(tǒng)的研究[D];南京大學(xué);2014年
7 樊霖;太赫茲探測器讀出電路設(shè)計[D];電子科技大學(xué);2015年
8 謝佳林;基于鉭酸鋰晶體的熱釋電太赫茲探測系統(tǒng)的設(shè)計[D];電子科技大學(xué);2015年
9 孫琳琳;太赫茲波段基于HEMT人工微結(jié)構(gòu)的制備與基礎(chǔ)研究[D];電子科技大學(xué);2015年
10 丁杰;基于表面微結(jié)構(gòu)的太赫茲吸收層研究[D];電子科技大學(xué);2015年
,本文編號:2038504
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/2038504.html