基于有機(jī)多孔聚合物的濕度傳感器的研究
本文選題:濕度傳感器 + 多孔聚合物; 參考:《吉林大學(xué)》2016年博士論文
【摘要】:濕度是自然環(huán)境中普遍存在的物理量,濕度傳感器是能夠?qū)h(huán)境濕度轉(zhuǎn)化為相應(yīng)可測(cè)量電信號(hào)的器件。濕度傳感器的基本原理是基于濕度敏感物質(zhì)與水分子之間的相互作用引起材料導(dǎo)電能力的變化,因此敏感材料是決定濕度傳感器性能的關(guān)鍵。實(shí)用化的電阻型濕度傳感器的雙親性聚合物通常由疏水性的主鏈和帶有極性基團(tuán)的親水性支鏈構(gòu)成,通過(guò)極性基團(tuán)對(duì)水分子進(jìn)行吸附,電離產(chǎn)生可以自由移動(dòng)的導(dǎo)電粒子。當(dāng)環(huán)境濕度發(fā)生變化時(shí),吸附水分子的量相應(yīng)發(fā)生變化,從而引起導(dǎo)電粒子濃度的變化,通過(guò)測(cè)試敏感膜的導(dǎo)電特性就可以實(shí)現(xiàn)對(duì)環(huán)境濕度的監(jiān)測(cè)。雙親性聚合物材料在較高相對(duì)濕度(80%RH)下長(zhǎng)期工作時(shí),由于親水性基團(tuán)和水分子之間的強(qiáng)相互作用,容易引起親水性基團(tuán)的聚集。因而吸附水分子較多時(shí)可能引起敏感物質(zhì)的部分溶解而發(fā)生流失,對(duì)元件的穩(wěn)定性產(chǎn)生非常嚴(yán)重的影響。在本論文中,以提高濕度傳感器的高濕穩(wěn)定性為目標(biāo),發(fā)展了新型多孔聚合物濕敏材料,通過(guò)物理共混和化學(xué)修飾兩類(lèi)不同的方法構(gòu)筑了多種多孔聚合物復(fù)合濕敏材料和雙親性多孔聚合物濕敏材料,并獲得了一系列具有優(yōu)異特性的濕度傳感器。主要內(nèi)容如下:(1)采用付克烷基化反應(yīng)制備出大孔聚合物P3HBA,通過(guò)物理共混的方法將濕敏活性物質(zhì)Li Cl裝載到P3HBA的孔道中,獲得了濕敏特性?xún)?yōu)異的Li Cl/P3HBA復(fù)合敏感材料。通過(guò)比較引入濕敏活性物質(zhì)Li Cl前后材料濕敏特性的差異,深入研究了Li Cl在濕度敏感機(jī)制中的作用,歸結(jié)為兩個(gè)方面:首先,Li Cl的引入增強(qiáng)了復(fù)合材料的親水能力,使其在低濕環(huán)境中也能吸附一定量的水分子因而引起濕敏元件阻抗的變化;其次,在高濕環(huán)境中,Li Cl能在吸附的液態(tài)水層中電離出離子參與導(dǎo)電,使?jié)衩粼淖杩惯M(jìn)一步減小。(2)利用溶劑熱法合成了微孔聚合物POF,通過(guò)物理共混的方法將濕敏活性物質(zhì)Li Cl裝載到POF的孔道中制備濕敏特性良好的Li Cl/POF復(fù)合濕敏材料。通過(guò)與Li Cl/P3HBA濕敏元件的濕敏特性對(duì)比,Li Cl/POF元件阻抗變化減小1個(gè)量級(jí),元件的響應(yīng)和恢復(fù)時(shí)間變長(zhǎng),分析其原因是由于POF內(nèi)部孔道的孔徑(0.6nm)過(guò)小,不利于水分子的傳輸與吸附,因此微孔聚合物作濕度敏感材料有一定的局限性。(3)通過(guò)改變反應(yīng)物單體的濃度制備不同直徑的等級(jí)多孔聚合物HPPMs微球,選用比表面積最大的HPPMs-1用于濕敏特性的研究,通過(guò)物理共混的方法將Li Cl裝載到HPPMs-1的孔道中制備濕敏特性?xún)?yōu)異的Li Cl/HPPMs-1復(fù)合濕敏材料。與之前研究的Li Cl/P3HBA和Li Cl/POF濕敏元件對(duì)比,Li Cl/HPPMs-1濕敏元件的阻抗變化的量級(jí)最大,而且比Li Cl/POF濕敏元件有更短的響應(yīng)恢復(fù)時(shí)間。這是由于HPPMs-1中的介孔孔道有利于水分子在材料內(nèi)部進(jìn)行傳輸,微孔孔道促進(jìn)了水分子的吸附,因此等級(jí)多孔聚合物在濕度傳感領(lǐng)域具有很大的應(yīng)用潛力。(4)采用化學(xué)修飾的方法在多孔交聯(lián)骨架上引入Li+合成Li P3HBA和PLBTO。第一種方法是先合成含有可修飾官能團(tuán)羥基和羧基的多孔聚合物P3HBA,然后再將羥基和羧基轉(zhuǎn)化為含Li+的官能團(tuán)便得到了Li P3HBA;另一種方法是先將單體間苯三酚中的羥基轉(zhuǎn)化為含Li+官能團(tuán),然后再利用含Li+的單體進(jìn)行聚合反應(yīng)得到PLBTO。Li P3HBA和PLBTO濕敏元件都具有優(yōu)異的濕度敏感特性,通過(guò)化學(xué)修飾的方法將Li+均勻的引入到聚合物骨架中,增強(qiáng)了材料的親水性,同時(shí)多孔交聯(lián)的結(jié)構(gòu)保證了材料的穩(wěn)定性。本論文提出發(fā)展多孔聚合物材料用于濕度傳感器,該類(lèi)材料有很好的結(jié)構(gòu)穩(wěn)定性,有利于解決目前濕度傳感器面臨的高濕穩(wěn)定性差的問(wèn)題。拓展了多孔聚合物材料的應(yīng)用領(lǐng)域,開(kāi)拓多孔聚合物材料設(shè)計(jì)的新途徑,探索出提高高分子濕度傳感器高濕耐水性的新方法。
[Abstract]:Humidity is a common physical quantity in natural environment. Humidity sensor is a device that can convert ambient humidity into a corresponding measurable electrical signal. The basic principle of humidity sensor is to change the electrical conductivity of material based on the interaction between humidity sensitive material and water molecules. Therefore, the sensitive material is the humidity sensor. The key of performance. The amphiphilic polymer of the practical resistance humidity sensor is usually composed of the hydrophobic main chain and the hydrophilic branch with the polar group. The water molecules are adsorbed by the polar group, and the free moving conductive particles are produced by ionization. When the ambient humidity changes, the amount of adsorbed water molecules occurs correspondingly. Changes in the concentration of conductive particles can lead to a change in the concentration of the conductive particles. By measuring the conductivity of the sensitive film, the monitoring of ambient humidity can be achieved. When the amphiphilic polymer material is working under high relative humidity (80%RH) for a long time, the hydrophilic group is easily aggregated because of the strong interaction between the hydrophilic group and the water molecule. In this paper, a new porous polymer wet sensitive material has been developed in this paper to improve the humidity stability of the humidity sensor. In this paper, a new porous polymer wet sensitive material is developed, which is constructed by two different kinds of methods: physical and chemical blending and chemical modification. A variety of porous polymer composite humidity sensitive materials and amphiphilic porous polymer humidity sensitive materials have been obtained, and a series of humidity sensors with excellent properties are obtained. The main contents are as follows: (1) the macroporous polymer P3HBA is prepared by the Fourier alkylation reaction, and the wet sensitive active substance Li Cl is loaded into the pore of the pore by physical blending. Li Cl/P3HBA composite sensitive material with excellent humidity sensitive properties was obtained. By comparing the difference of humidity sensitive characteristics before and after the introduction of the wet sensitive active substance Li Cl, the role of Li Cl in the humidity sensitive mechanism was studied in depth. Two aspects were summed up as follows: first, the introduction of Li Cl enhanced the hydrophilic ability of the composite material and made it suck in the low humidity environment. A certain amount of water molecules can cause the change of the impedance of the humidity sensor. Secondly, in the high humidity environment, Li Cl can ionize ions in the adsorbed liquid layer to participate in the electrical conduction, and further reduce the impedance of the humidity sensor. (2) the microporous polymer POF is synthesized by the solvent heat method, and the wet sensitive active substance Li Cl is installed by the physical blending method. The Li Cl/POF composite wet sensitive material with good humidity sensitivity was prepared in the POF pass. By comparing with the humidity sensitive characteristic of Li Cl/P3HBA humidity sensor, the impedance variation of Li Cl/POF element was reduced by 1 orders of magnitude, and the response and recovery time of the component was longer. The reason for the analysis was that the aperture of the inner pore (0.6Nm) of the internal POF was too small and was not conducive to the transmission of water molecules. The microporous polymer has certain limitations as the humidity sensitive material. (3) the preparation of the porous polymer HPPMs microspheres with different diameters is prepared by changing the concentration of the reactant monomer, and the HPPMs-1 is used to study the humidity sensitive properties of the largest specific surface area, and the Li Cl is loaded into the HPPMs-1 channel by physical blending. Li Cl/HPPMs-1 composite humidity sensitive material with excellent hypensitivity. Compared with previously studied Li Cl/P3HBA and Li Cl/POF humidity sensors, the Li Cl/HPPMs-1 humidity sensor has the largest impedance variation, and has a shorter response recovery time than the Li Cl/POF humidity sensor. This is because the mesoporous channel in HPPMs-1 is beneficial to the water molecules in the material. The microporous channel promotes the adsorption of water molecules. Therefore, the hierarchical porous polymers have great potential in the field of humidity sensing. (4) the first method of introducing Li+ to synthesize Li P3HBA and PLBTO. on the porous crosslinked skeleton by chemical modification is to combine the porous polymer hydroxyl and carboxyl group with polypore polymerization first. Li P3HBA is obtained by converting the hydroxyl and carboxyl groups into Li+ - containing functional groups, and the other method is to convert the hydroxyl groups in the monomers between the monomers to the Li+ functional group, and then the PLBTO.Li P3HBA and PLBTO humidity sensors have excellent humidity sensitivity by the polymerization of the monomer containing Li+. The chemical modification method introduced the Li+ into the polymer skeleton and enhanced the hydrophilicity of the material. At the same time, the porous crosslinking structure ensured the stability of the material. This paper proposed the development of porous polymer materials for humidity sensors. This kind of material has good structural stability and is helpful to solve the high humidity sensor at present. The problem of poor humidity stability has expanded the application field of porous polymer materials, opened up a new way to design porous polymer materials, and explored a new method to improve the humidity and water resistance of high polymer humidity sensor.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TP212
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高迎春;陶瓷濕度傳感器[J];傳感器技術(shù);1983年03期
2 郭秀芬;陶瓷濕度傳感器[J];壓電與聲光;1984年06期
3 何希才,尤克;濕度傳感器的選用[J];儀表技術(shù)與傳感器;1990年02期
4 孫秉軍;試談濕度傳感器技術(shù)與應(yīng)用[J];儀器儀表與分析監(jiān)測(cè);1994年03期
5 閻軍,王玉琦;濕度傳感器的研究開(kāi)發(fā)和應(yīng)用[J];自動(dòng)化博覽;1994年02期
6 ;國(guó)內(nèi)外部分濕度傳感器參數(shù)測(cè)試及選型[J];傳感器世界;1996年11期
7 吳瓊;采用高分子材料的濕度傳感器[J];自動(dòng)化與儀表;2000年05期
8 向馗,何聞,李揚(yáng);濕度傳感器復(fù)阻抗測(cè)量方法的研究[J];儀表技術(shù)與傳感器;2001年11期
9 趙秀珍,王乃釗,毛文華;光照度、空氣溫/濕度傳感器的研究和實(shí)驗(yàn)[J];中國(guó)儀器儀表;2002年01期
10 王志剛;物性型濕度傳感器的物理性能及其應(yīng)用[J];現(xiàn)代物理知識(shí);2004年01期
相關(guān)會(huì)議論文 前10條
1 王陽(yáng);陳軍寧;柯導(dǎo)明;孟堅(jiān);;濕度傳感器的分類(lèi)及研究[A];全國(guó)第16屆計(jì)算機(jī)科學(xué)與技術(shù)應(yīng)用(CACIS)學(xué)術(shù)會(huì)議論文集[C];2004年
2 侯建軍;;電子式濕度傳感器的選擇[A];四川省電子學(xué)會(huì)傳感技術(shù)第九屆學(xué)術(shù)年會(huì)論文集[C];2005年
3 李小兵;楊明紅;廖招龍;;端面鍍膜的光纖濕度傳感器的實(shí)驗(yàn)研究[A];中國(guó)光學(xué)學(xué)會(huì)2010年光學(xué)大會(huì)論文集[C];2010年
4 朱岳輝;;濕度傳感器示值誤差測(cè)量結(jié)果不確定度的評(píng)定[A];江蘇省計(jì)量測(cè)試學(xué)會(huì)2005年論文集[C];2005年
5 周鋒;張淑娟;劉泰宏;丁立平;房喻;;基于靜電紡絲法熒光濕度傳感器的制備[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第11分會(huì)場(chǎng)摘要集[C];2012年
6 謝曉;王文;何世堂;;涂覆聚苯胺的聲表面波濕度傳感器實(shí)驗(yàn)研究[A];中國(guó)聲學(xué)學(xué)會(huì)第十屆青年學(xué)術(shù)會(huì)議論文集[C];2013年
7 曾歡歡;趙湛;王奇;方震;張博軍;;聚酰亞胺電容式濕度傳感器的研制及改進(jìn)[A];中國(guó)微米、納米技術(shù)第七屆學(xué)術(shù)會(huì)年會(huì)論文集(一)[C];2005年
8 李揚(yáng);鄧超;楊慕杰;;交聯(lián)季胺化聚(4-乙烯基吡啶)/聚吡咯復(fù)合濕度傳感器的制備及其濕敏響應(yīng)特性研究[A];2011年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2011年
9 向光華;忽滿(mǎn)利;喬學(xué)光;劉玉;;基于光纖Bragg光柵的濕度傳感器的設(shè)計(jì)與研究[A];2011西部光子學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2011年
10 鄧超;李揚(yáng);楊慕杰;;測(cè)定低濕環(huán)境濕度的聚電解質(zhì)/石墨烯復(fù)合濕度傳感器的制備及其濕敏特性研究[A];2011年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2011年
相關(guān)重要報(bào)紙文章 前7條
1 重慶中易電測(cè)技術(shù)研究所;濕度傳感器與濕度變送模塊[N];電子報(bào);2000年
2 吳瓊;高分子材料在濕度傳感器中的應(yīng)用[N];中國(guó)電子報(bào);2000年
3 ;全數(shù)字三端式濕度傳感器研制成功[N];中國(guó)電子報(bào);2002年
4 ;ABB新型紅外濕度傳感器面向紙業(yè)[N];消費(fèi)日?qǐng)?bào);2010年
5 江西 李靖 編譯;3種濕度傳感器的應(yīng)用電路[N];電子報(bào);2011年
6 重慶 潘建;集成溫度傳感器IH3602及其應(yīng)用[N];電子報(bào);2001年
7 青化 摘譯;簡(jiǎn)易濕度表[N];電子報(bào);2010年
相關(guān)博士學(xué)位論文 前6條
1 江凱;基于有機(jī)多孔聚合物的濕度傳感器的研究[D];吉林大學(xué);2016年
2 姚堯;氧化石墨烯的濕敏特性及其在微納濕度傳感器上的應(yīng)用[D];西南交通大學(xué);2013年
3 趙振剛;碳納米管濕度傳感器敏感特性研究[D];哈爾濱工業(yè)大學(xué);2012年
4 丁喜波;電容式濕度傳感器測(cè)試方法與測(cè)試系統(tǒng)研究[D];哈爾濱理工大學(xué);2005年
5 王蕊;基于幾種介孔結(jié)構(gòu)材料的電阻型濕度傳感器的性能研究[D];吉林大學(xué);2010年
6 賀媛;BaTiO_3納米纖維濕度傳感性能的研究[D];吉林大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 杜鵬;基于高取向生長(zhǎng)的納米TiO_2濕度傳感系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];西南交通大學(xué);2015年
2 劉U,
本文編號(hào):1990444
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1990444.html