基于成像光強的光刻機像差原位檢測理論與方法研究
本文選題:投影式光刻 + 部分相干照明; 參考:《華中科技大學(xué)》2016年博士論文
【摘要】:隨著光刻技術(shù)不斷發(fā)展,成像分辨率極限一再推進,投影物鏡數(shù)值孔徑越來越大,光刻機像差直接影響成像分辨率和工藝窗口,是評價光刻機成像最重要的參數(shù)。光刻成像系統(tǒng)可以抽象為部分相干成像系統(tǒng),投影物鏡像差需要在光刻機運行過程中實現(xiàn)原位、精確檢測;诔上窆鈴姷墓饪虣C像差檢測技術(shù)具有成本低、易于實現(xiàn)、誤差來源少等優(yōu)勢,在原位檢測中有很好的適用性。然而在實際應(yīng)用中,該類技術(shù)仍然面臨眾多的技術(shù)難題:其一,現(xiàn)有技術(shù)缺乏嚴格的像差檢測模型,難以實現(xiàn)整個光瞳面波像差的快速精確檢測;其二,該類技術(shù)通常需要設(shè)計一組幾十個掩模圖形,同時需要離焦掃描測量光強,時間和經(jīng)濟成本較高;其三,在光刻機實際使用中,物鏡熱效應(yīng)等因素會產(chǎn)生較大波像差,而目前的主流技術(shù)是基于建立線性的簡化模型,不適用于較大波像差存在的情況;其四,隨著數(shù)值孔徑增大,偏振像差對成像質(zhì)量造成空前的影響,現(xiàn)有的檢測技術(shù)還沒有實現(xiàn)完整的偏振像差檢測。鑒于此,本學(xué)位論文從這四方面開展基于成像光強的光刻機投影物鏡像差檢測理論與方法研究,從像差與成像光強的內(nèi)在聯(lián)系機理出發(fā),探索光刻機投影物鏡像差原位檢測新理論和新方法。本文具體內(nèi)容包括:提出了基于光強傳輸方程的波像差原位檢測方法,將傳統(tǒng)光強傳輸方程擴展到了部分相干光成像中,建立了解析的像差模型。利用光刻機成像系統(tǒng)的遠場衍射成像特性,將像面的振幅相位信息與光瞳面相位信息建立關(guān)系,從而將光強傳輸方程應(yīng)用在了波像差檢測中。該方法通過采集較小離焦處的成像光強信號,利用傅里葉變換,進行解析計算,實現(xiàn)波像差原位檢測,在數(shù)值孔徑小于0.6的光刻系統(tǒng)中,波像差檢測精度高達mλ量級,有良好的適用性。提出了基于單幀光強提取的波像差原位檢測方法,構(gòu)建了波像差靈敏度矩陣解析模型,建立了波像差37級澤尼克系數(shù)快速重構(gòu)算法。通過深入的理論推導(dǎo),建立了光刻機成像模型,解析推導(dǎo)了澤尼克系數(shù)與成像光強之間的線性關(guān)系,從而定義了靈敏度矩陣,提出了掩模優(yōu)化方法。配合采用優(yōu)化設(shè)計的單個掩模圖形,只需要測量單幀離焦成像光強,即可獲得全部37級澤尼克系數(shù),克服了離焦掃描的時間和成本問題。該方法在較大數(shù)值孔徑(0.6NA0.85)下,對60m以內(nèi)的波像差,檢測精度高達mλ量級。提出了基于迭代求解的波像差原位檢測理論與方法,解決了大波像差情況下高精度、原位檢測難題。在解析線性模型的基礎(chǔ)上建立了二次像差畸變模型,分析了不同澤尼克項之間的二次耦合關(guān)系,定義了光強基函數(shù),調(diào)用解析計算的光強基函數(shù),采用迭代算法,對37級澤尼克系數(shù)進行求解,從而實現(xiàn)較大波像差的原位檢測。該方法在波像差高達150mλ時,澤尼克37級系數(shù)檢測誤差在0.1mλ量級,波像差檢測精度仍然高達mλ量級。提出了基于解析靈敏度函數(shù)的偏振像差原位檢測理論與方法。通過深入分析光刻機成像過程中光的偏振特性,建立了包含偏振的矢量成像模型,研究了不同類型偏振像差對成像畸變的不同影響。采用泡利澤尼克多項式對偏振像差進行表征,使用制作最為簡易的二元光柵作為掩模圖形,解析計算靈敏度函數(shù),以成像光強的三維分布作為觀測量,結(jié)合靈敏度矩陣,實現(xiàn)偏振像差原位檢測。該方法對偏振像差瓊斯光瞳的檢測相對誤差小于10-2,有效的對超大數(shù)值孔徑(NA0.85)浸沒式光刻機偏振像差進行了原位檢測。本學(xué)位論文提出的一系列像差檢測方法具有簡便易行、低成本、高效率、高精度等諸多優(yōu)點,為實際應(yīng)用中所面臨的技術(shù)難題提供了有效的解決方案,為光刻機投影物鏡像差的原位檢測、控制和補償提供了新原理、新途徑,極大豐富了現(xiàn)有的像差檢測技術(shù)。
[Abstract]:With the development of photolithography, the imaging resolution limit has been pushed forward and the numerical aperture of the projection lens is more and more large. The aberration of the lithography machine directly affects the imaging resolution and the process window. It is the most important parameter to evaluate the image of the lithography machine. The lithography imaging system can be abstracted as a part of the phase dry imaging system, and the image difference of the projector needs to be in the lithography machine. In the process of operation, in situ, accurate detection. Based on the imaging light intensity, the lithography aberration detection technology has the advantages of low cost, easy realization, less error source and so on. In the actual application, this kind of technology still faces many technical problems: first, the existing technology is lack of strict aberration detection. It is difficult to realize the rapid and accurate detection of the whole pupil wavefront aberration. Secondly, this kind of technology usually needs to design a set of dozens of mask patterns, and needs to measure the intensity, time and cost of the focal scanning. Thirdly, in the actual use of the photolithography, the thermal effect of the objective lens will produce a larger wave aberration, and the present The mainstream technology is based on the establishment of a linear simplified model, which is not suitable for the existence of large wavefront aberrations. Fourthly, with the increase of the numerical aperture, the polarization aberration has an unprecedented impact on the imaging quality. The existing detection technology has not yet realized the complete polarization aberration detection. In view of this, this dissertation is based on these four aspects of imaging. The theory and method of the mirror image difference detection of the photolithography of the photolithography machine are studied. From the inner connection mechanism of the aberration and the imaging light intensity, a new theory and new method are explored for the mirror image difference in situ detection of the photolithography projector. The specific contents of this paper include: a method of in-situ detection of wavefront aberration based on the light intensity transmission equation is proposed, and the traditional light intensity transmission side is put forward. The analytical aberration model is established in the partially coherent optical imaging. Using the far-field diffraction imaging characteristics of the imaging system, the relationship between the amplitude phase information of the image surface and the phase information of the pupil surface is established, and the light intensity transmission equation is applied to the wavefront aberration detection. The method is used to collect the imaging light of the smaller defocus. Strong signal, using Fourier transform to carry out analytical calculation, the wavefront aberration in situ detection is realized. In the lithography system whose numerical aperture is less than 0.6, the accuracy of the wave aberration detection is up to m lambda, and it has good applicability. A wave aberration in situ detection method based on single frame light intensity extraction is put forward, and the analytical model of the wavefront aberration matrix is established. The fast reconstruction algorithm of the 37 stage Zernike coefficient of the wavefront aberration is developed. The imaging model of the photolithography is established through in-depth theoretical deduction. The linear relationship between the Zernike coefficient and the intensity of the imaging light is derived. The sensitivity matrix is defined and the mask optimization method is proposed. The intensity of single frame defocus imaging can obtain all 37 Zernike coefficients and overcome the time and cost of the defocus scanning. Under the large numerical aperture (0.6NA0.85), the accuracy of the wave aberration within 60m is up to m lambda. The theory and method of the in-situ detection of wavefront aberration based on iterative solution are proposed, and the large wave aberration is solved. The two aberration distortion model is established on the basis of the analytical linear model. The two coupling relations between different Zernike terms are analyzed. The light strong basis function is defined, the optical strong basis function of the analytic calculation is called, and the iterative algorithm is used to solve the 37 level Zernike coefficient, thus the larger wave image is realized. When the wavefront aberration is as high as 150m lambda, the Zernike 37 degree coefficient detection error is at the magnitude of 0.1M lambda and the accuracy of the wavefront aberration is still up to m lambda. The theory and method of polarization aberration in situ detection based on the analytic sensitivity function are proposed. The polarizing vector imaging model is used to study the different effects of different types of polarization aberrations on imaging distortion. The polarization aberrations are characterized by Pauli Zernike polynomials. The most simple two element grating is used as the mask pattern to calculate the sensitivity function. The three-dimensional distribution of the image intensity is measured and the sensitivity is combined to be sensitive. The polarization aberration in situ detection is realized by the degree matrix. The relative error of the polarization aberration Jones pupil is less than 10-2, and the polarization aberration of the ultra large numerical aperture (NA0.85) immersion lithography is in situ detection. A series of aberration detection methods proposed in this dissertation are simple and convenient, low cost, high efficiency and high precision. Many advantages, which provide an effective solution for the technical problems faced in the actual application, provide a new principle for the in-situ detection, control and compensation of the mirror image difference of the lithography projector, and a new way, which greatly enriches the existing aberration detection techniques.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TP391.41;TN305.7
【相似文獻】
相關(guān)期刊論文 前10條
1 ;充分發(fā)揮光刻機功能的研討[J];中國計量學(xué)院學(xué)報;2001年02期
2 李艷秋;光刻機的演變及今后發(fā)展趨勢[J];微細加工技術(shù);2003年02期
3 嚴利人;光刻機曝光光學(xué)中的概念辨析[J];微細加工技術(shù);2003年02期
4 ;國產(chǎn)首臺直寫式光刻機在合肥問世[J];集成電路通訊;2008年01期
5 趙陽;;光刻機常見故障與對策[J];上海電機學(xué)院學(xué)報;2009年02期
6 蔣薇;趙立新;;光刻機外型設(shè)計新理念[J];現(xiàn)代科學(xué)儀器;2013年01期
7 ;光刻機座談會在江蘇吳縣召開[J];半導(dǎo)體設(shè)備;1977年03期
8 高仰月;間隙設(shè)定技術(shù)在光刻機中的應(yīng)用[J];電子工業(yè)專用設(shè)備;1987年02期
9 卿典;中科院光電所制成1.5~2μm光刻機[J];紅外;1994年05期
10 榮瑩;銷售市場87億美元的光刻機[J];微電子技術(shù);1998年03期
相關(guān)會議論文 前5條
1 何峰;吳志明;王軍;袁凱;蔣亞東;;襯底材料對光刻機對準精度的影響研究[A];2009年先進光學(xué)技術(shù)及其應(yīng)用研討會論文集(上冊)[C];2009年
2 閆觀勇;王向朝;楊濟碩;徐東波;;光刻機空間像的工件臺坐標的校正方法[A];第十四屆全國光學(xué)測試學(xué)術(shù)討論會論文(摘要集)[C];2012年
3 滕偉;柳亦兵;;掃描光刻機硅片臺五自由度激光測量模型[A];第二十九屆中國控制會議論文集[C];2010年
4 王向朝;;光刻機投影物鏡成像質(zhì)量原位檢測技術(shù)的研究[A];第十一屆全國光學(xué)測試學(xué)術(shù)討論會論文(摘要集)[C];2006年
5 馬明英9;王向朝;王帆;;一種新的光刻機投影物鏡垂軸像質(zhì)參數(shù)原位檢測技術(shù)[A];第十一屆全國光學(xué)測試學(xué)術(shù)討論會論文(摘要集)[C];2006年
相關(guān)重要報紙文章 前10條
1 記者 李鑫 北京;國內(nèi)首臺自主知識產(chǎn)權(quán)光刻機將在合肥面世[N];電子資訊時報;2007年
2 潘峰;安徽:國產(chǎn)首臺直寫式光刻機問世[N];中國電子報;2008年
3 朱磊;我國首臺精密光刻機問世[N];人民日報;2008年
4 通訊員 龐輝揚;中山將擬量產(chǎn)直寫光刻機[N];中山日報;2012年
5 本報記者 郝玲邋張驊 通訊員 張和允;洋技術(shù)能否打造中國“芯”[N];中國企業(yè)報;2007年
6 哲一;芯碩半導(dǎo)體:亞微米級光刻機“合肥造”[N];中國電子報;2008年
7 本報記者 李治國;“智造”光刻機 十年磨一劍[N];經(jīng)濟日報;2012年
8 李陳續(xù);國產(chǎn)首臺亞微米無掩膜光刻機通過鑒定[N];光明日報;2008年
9 本報記者 王春 實習(xí)生 肖浩宇;光陰十年刻下深深的腳印[N];科技日報;2012年
10 記者 戴麗昕;十年一劍 中國“智造”追趕超越[N];上?萍紙;2012年
相關(guān)博士學(xué)位論文 前3條
1 許爽;基于成像光強的光刻機像差原位檢測理論與方法研究[D];華中科技大學(xué);2016年
2 劉巍;基于靈敏度解析函數(shù)的光刻機波像差檢測理論與方法研究[D];華中科技大學(xué);2011年
3 李金龍;ArF浸沒光刻雙工件臺運動模型研究[D];中國科學(xué)院研究生院(光電技術(shù)研究所);2013年
相關(guān)碩士學(xué)位論文 前10條
1 劉法志;光刻機換臺過程控制算法研究[D];哈爾濱工業(yè)大學(xué);2015年
2 顏飛;光刻機微動測量系統(tǒng)數(shù)據(jù)處理方法研究[D];哈爾濱工業(yè)大學(xué);2015年
3 高軒;UV-LED曝光系統(tǒng)及曝光工藝研究[D];北京交通大學(xué);2016年
4 鄒鵬程;光刻機粗精耦合及同步控制算法研究[D];哈爾濱工業(yè)大學(xué);2010年
5 項程;光刻機雙工件臺系統(tǒng)數(shù)學(xué)模型的建立與驗證[D];哈爾濱工業(yè)大學(xué);2012年
6 劉旗;步進掃描光刻機工件臺同步誤差校正方法及控制[D];中國科學(xué)院研究生院(光電技術(shù)研究所);2013年
7 李聰;光刻機雙工件臺軌跡規(guī)劃算法研究[D];哈爾濱工業(yè)大學(xué);2013年
8 閆華星;雙工件臺光刻機虛擬現(xiàn)實三維仿真平臺設(shè)計[D];哈爾濱工業(yè)大學(xué);2012年
9 謝德東;光刻機結(jié)構(gòu)動力學(xué)建模與仿真[D];華中科技大學(xué);2007年
10 周沛;光刻機運動平臺功率放大控制卡的設(shè)計與實現(xiàn)[D];華中科技大學(xué);2011年
,本文編號:1979858
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1979858.html