天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 碩博論文 > 信息類博士論文 >

自旋記憶磁電阻與整流磁電阻的研究

發(fā)布時(shí)間:2018-06-02 13:28

  本文選題:整流磁電阻 + 隧穿磁電阻; 參考:《山東大學(xué)》2017年博士論文


【摘要】:隨著信息技術(shù)的快速發(fā)展,大數(shù)據(jù)、云存儲(chǔ)等新概念不斷興起,人類對(duì)芯片提出了高速度、低功耗、高集成度的要求。在過去50年中,通過提高光刻技術(shù)精度,采用新工藝等方法,芯片的集成度遵從摩爾定律的預(yù)言快速發(fā)展。但是,隨著芯片集成度的提高,量子效應(yīng)的出現(xiàn)、單位面積功耗提升以及投入和產(chǎn)出失衡等因素使得摩爾定律即將失效。為了突破當(dāng)前微電子技術(shù)的瓶頸,人們提出了自旋電子學(xué)的解決方案。電子擁有電荷和自旋兩種屬性,傳統(tǒng)的微電子學(xué)只利用了電子的電荷屬性,自旋電子學(xué)可以同時(shí)利用電子的電荷和自旋屬性,可以從這兩個(gè)自由度去調(diào)控器件的性能,進(jìn)而實(shí)現(xiàn)新型多功能芯片。在自旋電子學(xué)的發(fā)展過程中,磁電阻(Magnetoresistance,MR)現(xiàn)象在磁傳感器和磁存儲(chǔ)領(lǐng)域有無可替代的作用,一直是研究的熱點(diǎn)。1857年,Thomson在鐵磁金屬中發(fā)現(xiàn)了各向異性磁電阻(Anistropy Magnetoresistance,AMR)現(xiàn)象,揭開了磁電阻現(xiàn)象研究的序幕,其物理機(jī)制是自旋-軌道耦合導(dǎo)致散射截面不同。1988年,Grunberg教授和Fert教授分別獨(dú)立的在反鐵磁耦合的Fe/Cr多層膜中發(fā)現(xiàn)了巨磁電阻效應(yīng)(Giant Magnetoresistance,GMR),它起源于自旋相關(guān)的散射,隨后GMR效應(yīng)被迅速應(yīng)用于硬盤讀頭領(lǐng)域,提高了硬盤的存儲(chǔ)密度。1994年,Jin等人在鈣鈦礦錳氧化物中發(fā)現(xiàn)了龐磁阻效應(yīng)(Colossal Magnetoresistance,CMR),該效應(yīng)起源于磁相關(guān)的金屬-絕緣體轉(zhuǎn)變。1975年發(fā)現(xiàn)了隧穿磁電阻(TunnelingMagnetoresistance,MR),并將其歸因于自旋相關(guān)的隧穿。隨后,在Al2O3和MgO作為勢(shì)壘層的鐵磁\絕緣體\鐵磁三明治結(jié)構(gòu)中獲得了大的TMR效應(yīng)。并且,因?yàn)镸gO勢(shì)壘特殊的自旋過濾(Spin Filter)效應(yīng),MgO單晶勢(shì)壘磁隧道結(jié)的磁電阻比值可以高達(dá)600%(300K)。相比GMR效應(yīng),TMR磁電阻比值更高、功耗更低、更易集成,被廣泛應(yīng)用于磁傳感器、硬盤的磁讀頭、磁隨機(jī)存儲(chǔ)器(MRAM)、自旋微波振蕩器、自旋轉(zhuǎn)移矩二極管以及自旋邏輯器件中。在硅、鍺、銻化銦、硒化銀、砷化鎵等非磁半導(dǎo)體中發(fā)現(xiàn)了異常磁電阻效應(yīng)(Extrordinary Magnetoresistance,EMR)。EMR效應(yīng)隨著磁場(chǎng)增加呈現(xiàn)近似線性增加,未出現(xiàn)飽和現(xiàn)象。研究表明EMR與材料內(nèi)部的載流子濃度、遷移率以及電場(chǎng)分布的非均勻性密切相關(guān)。最近,章曉中教授課題組利用二極管的非線性輸運(yùn)性質(zhì)和材料的磁響應(yīng),最終實(shí)現(xiàn)了巨大的磁電阻比值,可稱之為二極管增強(qiáng)的磁電阻效應(yīng)(Diode-enhancedMagnetoresistance,DEMR);贓MR效應(yīng)和DEMR效應(yīng),研究者提出了可重構(gòu)的磁電阻邏輯器件?梢,磁電阻效應(yīng)不僅有豐富的物理內(nèi)涵,而且推動(dòng)了磁傳感器、磁讀出頭、磁隨機(jī)存儲(chǔ)器以及可重構(gòu)磁邏輯器件等的發(fā)展,有重要的應(yīng)用前景。因此,新型磁電阻效應(yīng)的發(fā)現(xiàn)或者將已有磁電阻效應(yīng)和其它效應(yīng)相結(jié)合將會(huì)為我們發(fā)展新型多功能器件,進(jìn)而實(shí)現(xiàn)高速度、低功耗、高集成度芯片提供嶄新的思路。本論文的工作包括以下五方面內(nèi)容:其一,將電致阻變效應(yīng)(Resistance Switching,RS)和磁電阻效應(yīng)結(jié)合在Co/CoO-ZnO/Co復(fù)合勢(shì)壘磁隧道結(jié)(Magnetic Tunneling Junctions,MTJs)中,進(jìn)而實(shí)現(xiàn)了 自旋記憶磁電阻效應(yīng)(Spin Memory Magnetoresistance),獲得四個(gè)非易失的電阻態(tài);其二,在Al/Ge/Al肖特基結(jié)異質(zhì)結(jié)中發(fā)現(xiàn)了整流磁電阻效應(yīng)(Rectification Magnetoresistance,RMR),這是一種新型的磁電阻效應(yīng),并指出整流磁電阻效應(yīng)要求器件同時(shí)具有整流效應(yīng)和磁電阻效應(yīng);其三,在Co/CoO-ZnO/Co非對(duì)稱勢(shì)壘磁隧道結(jié)中觀測(cè)到了自旋整流磁電阻效應(yīng),該效應(yīng)起源于自旋極化的電子通過CoO-ZnO非對(duì)稱勢(shì)壘的隧穿;其四,通過交流電流和直流電流混合的方法實(shí)現(xiàn)了整流磁電阻的調(diào)控,獲得了巨大磁電阻的比值;其五,通過整流器件和磁電阻器件并聯(lián)的方式實(shí)現(xiàn)了整流磁電阻效應(yīng),并建立理論模型,可以很好的描述實(shí)驗(yàn)觀測(cè)到的結(jié)果。下面我們?cè)敿?xì)地闡述論文的五部分研究?jī)?nèi)容:一、在Co/CoO-ZnO/Co復(fù)合勢(shì)壘磁隧道結(jié)中實(shí)現(xiàn)了自旋記憶磁電阻效應(yīng)。通過磁控濺射結(jié)合金屬掩膜的方法在玻璃襯底上制備了結(jié)面積為100 μm ×100 μm的Co/CoO-ZnO/Co MTJs。在電場(chǎng)的作用下,氧離子在CoO層和ZnO層中遷移,引起CoO在絕緣態(tài)與金屬態(tài)之間相互轉(zhuǎn)變,發(fā)生電致阻變效應(yīng),進(jìn)而實(shí)現(xiàn)高、低兩個(gè)電阻態(tài)。在高電阻態(tài),自旋極化的電子通過CoO-ZnO復(fù)合勢(shì)壘隧穿,產(chǎn)生TMR效應(yīng);在低電阻態(tài),CoO變成金屬態(tài),實(shí)現(xiàn)GMR效應(yīng)。TMR和GMR又分別具有平行態(tài)和反平行態(tài)兩個(gè)電阻態(tài),因此總共實(shí)現(xiàn)了四個(gè)穩(wěn)定的電阻態(tài),在多態(tài)存儲(chǔ)、人工神經(jīng)元模擬方面有重要的應(yīng)用前景。不僅如此,CoO是反鐵磁材料,Co/CoO界面處存在交換偏置效應(yīng)。在電致阻變的過程中,CoO的反鐵磁結(jié)構(gòu)被破壞和重構(gòu),從而實(shí)現(xiàn)了交換偏置效應(yīng)的可逆電調(diào)控。在高阻態(tài),我們觀測(cè)到高達(dá)68%的隧穿磁電阻,通過Julliere模型反推出Co/CoO界面處自旋極化率高達(dá)72%。為了驗(yàn)證實(shí)驗(yàn)觀測(cè)到的結(jié)果,我們對(duì)CoO和Co/CoO界面進(jìn)行了第一性原理計(jì)算。計(jì)算結(jié)果表明當(dāng)CoO中沒有氧空位時(shí)候,為絕緣體;當(dāng)CoO中氧空位濃度為25%時(shí),CoO轉(zhuǎn)變?yōu)榻饘賾B(tài),驗(yàn)證了本實(shí)驗(yàn)中觀測(cè)到的電致阻變效應(yīng)。計(jì)算還表明Co/CoO界面處自旋極化率高達(dá)73.2%,同Julliere模型反推出的結(jié)果一致。二、Al/Ge/Al的肖特基異質(zhì)結(jié)中的整流磁電阻效應(yīng)。通過電子束蒸發(fā)結(jié)合光刻的方法在本征鍺襯底上制備了 Al/Ge的肖特基結(jié),施加一個(gè)交流電流到該結(jié)兩端,測(cè)量整流電壓隨外磁場(chǎng)變化。在室溫,器件的整流磁電阻高達(dá)250%,而其傳統(tǒng)的直流磁電阻只有70%。整流磁電阻的發(fā)現(xiàn)不僅為磁電阻家族增添了新的一員,而且提供了一種用交流電流實(shí)現(xiàn)多功能器件的方法。通過一系列的對(duì)照實(shí)驗(yàn),我們得出單純具有整流或磁電阻效應(yīng)的器件都不能實(shí)現(xiàn)整流磁電阻效應(yīng)。整流磁電阻效應(yīng)要求在同一個(gè)器件中同時(shí)具有整流效應(yīng)和磁電阻效應(yīng)。通過一系列分析發(fā)現(xiàn),本征鍺襯底中載流子濃度較低,電子波函數(shù)之間的交疊有限,外加磁場(chǎng)會(huì)引起電子波函數(shù)收縮,導(dǎo)致電子波函數(shù)之間的交疊減小,因此磁場(chǎng)通過收窄能帶寬度使得能帶提高,進(jìn)一步改變了 Al/Ge肖特基界面處的能帶彎曲,器件的整流效應(yīng)發(fā)生變化,最終導(dǎo)致整流磁電阻效應(yīng)。三、Co/CoO-ZnO/Co非對(duì)稱勢(shì)壘磁隧道結(jié)中的自旋整流磁電阻效應(yīng)。在具有非對(duì)稱勢(shì)壘的Co/CoO-ZnO/Co MTJs中觀測(cè)到高達(dá)116%的整流磁電阻效應(yīng),與此同時(shí)其隧穿磁電阻只有20%左右。由于Co/CoO-ZnO/Co MTJs中的整流磁電阻效應(yīng)起源于自旋相關(guān)隧穿,因此稱之為自旋整流磁電阻效應(yīng)(Spin RMR)。不同磁場(chǎng)下的伏安特性曲線的測(cè)量證明該器件同時(shí)具有磁電阻效應(yīng)和整流效應(yīng)。進(jìn)一步通過微分電導(dǎo)譜的測(cè)量發(fā)現(xiàn),微分電導(dǎo)譜呈現(xiàn)開口向上的拋物線形狀,且最小值出現(xiàn)在-11mV左右,符合Brinkman,Dynes and Rowell 模型(BDR模型),證明整流效應(yīng)來源于非對(duì)稱的CoO-ZnO勢(shì)壘。通過數(shù)值擬合,我們得到了 CoO-ZnO非對(duì)稱勢(shì)壘的寬度和兩側(cè)的勢(shì)壘高度。自旋整流磁電阻將基于電荷的整流效應(yīng)和基于自旋的磁電阻效應(yīng)相結(jié)合,為我們研制新型自旋電子學(xué)器件提供了新途徑。四、Al/Ge/In肖特基異質(zhì)結(jié)中整流磁電阻效應(yīng)的電調(diào)控制備了 Al/Ge/In肖特基異質(zhì)結(jié),將直流電流和交流電流混合后施加在該異質(zhì)結(jié)兩端,通過調(diào)控直流分量的大小,實(shí)現(xiàn)了磁電阻從-530%~32500%的顯著調(diào)控。這是一種新型磁電調(diào)控手段,該技術(shù)可推廣到所有具有整流磁電阻效應(yīng)的器件,將推動(dòng)多功能器件的發(fā)展。該效應(yīng)的產(chǎn)生是由于當(dāng)將直流電流和交流電流混合后施加在Al/Ge/In肖特基異質(zhì)結(jié)器件兩端時(shí),直流電流產(chǎn)生的電壓降和交流電流的整流電壓疊加在一起被探測(cè)到。因此,通過改變直流分量和交流分量的大小可以實(shí)現(xiàn)對(duì)探測(cè)電壓的調(diào)控,從而實(shí)現(xiàn)整流磁電阻效應(yīng)的調(diào)控。五、用分立器件實(shí)現(xiàn)整流磁電阻效應(yīng),并建立理論模型。交替濺射制備的CoZnO磁性半導(dǎo)體薄膜作為磁電阻器件,1N5817肖特基二極管作為整流器件。通過將兩者并聯(lián),耦合整流效應(yīng)和磁電阻效應(yīng),構(gòu)成整流磁電阻器件,實(shí)現(xiàn)了整流磁電阻效應(yīng)。將直流電流和交流電流混合后施加到該器件兩端,通過調(diào)節(jié)直流分量的大小,該器件的磁電阻可以在-11300%~13500%范圍內(nèi)被顯著調(diào)控。該方法拓寬了整流磁電阻的應(yīng)用范圍。根據(jù)整流磁電阻的定義以及分立的整流器件和磁電阻器件的電輸運(yùn)性質(zhì),我們建立了理論模型,該模型能夠通過分立器件的參數(shù)仿真器件的整流磁電阻效應(yīng)及其電調(diào)控特性,與實(shí)驗(yàn)觀測(cè)到的結(jié)果相吻合。這將有助于我們通過獨(dú)立調(diào)整分立器件的參數(shù),優(yōu)化整流磁電阻器件的性能。
[Abstract]:With the rapid development of information technology, large data, cloud storage and other new concepts, human chips have raised the requirements of high speed, low power consumption and high integration. In the past 50 years, the integration degree of the chip has developed rapidly from the prophecy of Moore's law by improving the precision of lithography technology and using the new technology. In order to break through the current microelectronic technology bottlenecks, people have proposed a solution to spintronics, which have two properties of charge and spin, and traditional microelectronics only use electrons. In the development process of spintronics, the Magnetoresistance (MR) phenomenon has an irreplaceable role in the field of magnetic sensors and magnetic storage, which can be used to regulate the performance of the device from the two degrees of freedom. In.1857 years of research, Thomson found the anisotropic magnetoresistance (Anistropy Magnetoresistance, AMR) in ferromagnetic metals, which uncovered the prelude to the study of magnetoresistance. The physical mechanism is that the spin orbit coupling causes the scattering cross section to be different for.1988 years, and Professor Grunberg and Professor Fert are independent of the antiferromagnetic coupling. The giant magnetoresistance effect (Giant Magnetoresistance, GMR) was found in the Fe/Cr multilayer film. It originated from the spin dependent scattering, and then the GMR effect was quickly applied to the field of hard disk reading head, which increased the storage density of the hard disk for.1994 years, and Jin et al. In the perovskite manganese oxide (Colossal Magnetoresistance, CMR). The effect originated from the magnetic related metal insulator transition in.1975 and found the tunneling magnetoresistance (TunnelingMagnetoresistance, MR) and attributed it to spin related tunneling. Subsequently, the large TMR effect was obtained in the ferromagnetic sandwich structure of the barrier layer of Al2O3 and MgO, and the special spin filtration of the MgO barrier. (Spin Filter) effect, the magnetoresistance ratio of the MgO single crystal barrier magnetic tunnel junction can be as high as 600% (300K). Compared to the GMR effect, the TMR magnetoresistance ratio is higher, the power consumption is lower, and it is easier to integrate. It is widely used in magnetic sensors, magnetic read head of hard disk, magnetic random memory (MRAM), spin microwave oscillator, spin transfer moment diode and spin logic device. In non magnetic semiconductors such as silicon, germanium, indium selenide, silver selenide, gallium arsenide, and other non magnetic semiconductors, the effect of abnormal magnetoresistance (Extrordinary Magnetoresistance, EMR).EMR showed an approximate linear increase with the increase of the magnetic field, without saturation. The study showed that the carrier concentration, the mobility and the distribution of the electric field within the EMR and the material were inhomogeneous. There is a close relationship. Recently, Professor Zhang Xiaozhong's team, using the nonlinear transport properties of the diode and the magnetic response of the material, finally achieved a huge magnetoresistance ratio, which is called the Diode-enhancedMagnetoresistance (DEMR). Based on the EMR effect and the DEMR effect, the researchers have proposed a reconfigurable magnetoelectricity. It can be seen that the magnetoresistance effect not only has rich physical connotation, but also promotes the development of magnetic sensors, magnetic reading heads, magnetic random memory and reconfigurable magnetic logic devices. Therefore, the discovery of the new magnetoresistance effect or the combination of the existing magnetoresistance effects and other effects will be for me We develop new multi-functional devices to achieve high speed, low power, and high integration chips. The work of this paper includes the following five aspects: first, it combines the Resistance Switching, RS and magnetoresistance effects in the Co/CoO-ZnO /Co composite barrier magnetic tunnel junction (Magnetic Tunneling Junctions, MTJ) In s), the spin memory magnetoresistance effect (Spin Memory Magnetoresistance) is realized and four nonvolatile resistance states are obtained. Secondly, the rectifying magnetoresistance effect (Rectification Magnetoresistance, RMR) is found in the Al/Ge/Al Schottky junction heterojunction, which is a new type of magnetoresistance effect and points out the requirement of the rectifying magnetoresistance effect. The device has both rectification and magnetoresistance effects. Thirdly, the spin rectifying magnetoresistance effect is observed in the Co/CoO-ZnO/Co asymmetrical barrier magnetic tunnel junction, which originates from the tunneling of the spin polarized electrons through the CoO-ZnO asymmetric barrier; fourthly, the rectifying magnetoresistance is realized by the method of mixing the AC current and the DC current. The ratio of the giant magnetoresistance is obtained. Fifthly, the rectifying magnetoresistance effect is realized through the parallel connection of the rectifier device and the magnetoresistance device, and the theoretical model is set up. The results can be well described by the experimental observation. In the following five parts of the paper are described in detail: first, the Co/CoO-ZnO/Co composite barrier magnetic tunnel. The spin memory magnetoresistance effect is realized in the path junction. By the method of magnetron sputtering and metal mask, the Co/CoO-ZnO/Co MTJs. with a junction area of 100 mu x 100 mu is prepared on the glass substrate, and the oxygen ions migrate in the CoO layer and the ZnO layer under the action of the electric field, causing the CoO to change between the insulating state and the metal state, and the electrodrag change occurs. In the high resistance state, in the high resistance state, the spin polarized electrons are tunneling through the CoO-ZnO composite barrier, producing the TMR effect. In the low resistance state, the CoO becomes the metal state, and the GMR effect.TMR and GMR have parallel and anti parallel states respectively. Therefore, four stable resistance states are realized in total, and polymorphic in a total of four states. Storage, artificial neuron simulation has an important application prospect. Not only that, CoO is antiferromagnetic material, and there is an exchange bias effect at the Co/CoO interface. In the process of electrical impedance change, the antiferromagnetic structure of CoO is destroyed and reconstructed, thus the reversible electrical regulation of the exchange bias effect is realized. In the high resistivity state, we observed up to 68% of the tunnel. Through the magnetoresistance, the Julliere model was used to reverse the spin polarization of the Co/CoO interface up to 72%. in order to verify the results of the experimental observation. We carried out the first principle calculation of the CoO and Co/CoO interfaces. The calculation shows that when there is no oxygen vacancy in the CoO, it is an insulator; when the oxygen vacancy concentration in CoO is 25%, the CoO is transformed into a metal state. The electroresistance effect observed in this experiment is also proved. The calculation also shows that the spin polarization of the Co/CoO interface is up to 73.2%, which is in accordance with the reverse results of the Julliere model. The rectifying magnetoresistance effect in the Schottky heterojunction of two, Al/Ge/Al is prepared by electron beam evaporation and photolithography to prepare the Schottky on the intrinsic germanium substrate. An AC current is applied to the junction at both ends of the junction to measure the change of the rectifying voltage with the external magnetic field. At room temperature, the rectifier's rectifying magnetoresistance is up to 250%, and the discovery of its traditional DC magnetoresistance only with the 70%. rectifying magnetoresistance not only adds a new member of the magnetoresistance family, but also provides a formula for realizing multifunction devices with AC current. Method. Through a series of controlled experiments, we conclude that a single rectifier or magnetoresistance effect can not achieve the rectifying magnetoresistance effect. The rectifying magnetoresistance effect requires simultaneous rectification and magnetoresistance effects in the same device. Through a series of analyses, the carrier concentration in the intrinsic germanium substrate is low, and the electron wave is found. The overlap between the functions is limited, and the external magnetic field will cause the contraction of the electronic wave function, which leads to the reduction of the overlap between the electronic wave functions, so the magnetic field increases the energy band by narrowing the energy band width, and further changes the band bending of the Al/Ge Schottky interface. The rectifier effect should be changed, and the rectifying magnetoresistance effect is finally resulted. Three, The spin rectifying magnetoresistance effect in Co/CoO-ZnO/Co asymmetrical barrier magnetic tunnel junction. The rectifying magnetoresistance effect of up to 116% is observed in the Co/CoO-ZnO/Co MTJs with asymmetric barrier, while its tunneling magnetoresistance is only about 20%. Because the rectifying magnetoresistance effect in Co/CoO-ZnO/Co MTJs originates from spin related tunneling, It is called the spin rectifying magnetoresistance effect (Spin RMR). The measurement of the volt ampere characteristic curves under different magnetic fields shows that the device has both magnetoresistance and rectifying effects. Further through the measurement of differential conductance spectrum, the differential conductance spectrum presents an upwards parabolic shape, and the minimum value appears at about -11mV, which is in line with Brinkman, Dyn The ES and Rowell model (BDR model) proves that the rectifying effect derives from the asymmetric CoO-ZnO barrier. By numerical fitting, we get the width of the asymmetric barrier of CoO-ZnO and the barrier height on both sides. The spin rectifying magnetoresistance combines the rectification effect of the charge and the spin based magnetoresistance effect to develop a new spin for us. The electronic device provides a new way. Four, the Al/Ge/In Schottky heterojunction is prepared by the modulation of the rectifying magnetoresistance effect in the Al/Ge/In Schottky heterojunction. The DC current and AC current are mixed and applied to the two ends of the heterojunction. By regulating the size of the DC component, the magnetoresistance from the -530% to 32500% is realized. This technique can be extended to all the devices with the rectifying magnetoresistance effect, which will promote the development of the multifunction device. The effect is due to the voltage drop produced by direct current current and the integral of AC current when the DC current and AC current are mixed at both ends of the Al/Ge/In Schottky heterojunction device. The current voltage superposition is detected together. Therefore, by changing the DC component and the size of the AC component, the detection voltage can be regulated and the rectifying magnetoresistance effect is realized. Five, the rectifying magnetoresistance effect is realized by the discrete device, and the theoretical model is established. The magnetic semiconductor thin film prepared by alternate sputtering is used as the magnetic field. Five Resistance device, 1N5817 Schottky diode is used as a rectifier. By parallel, coupled rectifier effect and magnetoresistance effect, a rectifier magnetoresistance device is formed to realize the rectifying magnetoresistance effect. The DC current and AC current are mixed to the two ends of the device. The magnetoresistance of the device can be adjusted by adjusting the size of the DC component. This method broadens the application range of the rectifying magnetoresistance in the range of -11300% to 13500%. Based on the definition of the rectifying magnetoresistance and the electrical transport properties of the discrete rectifier devices and magnetoresistance devices, a theoretical model is established. The model can simulate the rectifying magnetoresistance effect of the device through the parameters of the discrete device and its effect. The electrical regulation characteristics coincide with the experimental results. This will help us to optimize the performance of the rectifier by adjusting the parameters of the discrete device independently.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN303

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 常春;唐雁坤;;錳氧化物復(fù)合物中的低場(chǎng)磁電阻效應(yīng)研究[J];電子元件與材料;2013年10期

2 戴聞 ,高政祥;兩種新型磁電阻敏感器[J];物理;2002年11期

3 蔡建旺,趙見高,詹文山,沈保根;磁電子學(xué)中的若干問題[J];物理學(xué)進(jìn)展;1997年02期

4 王海鵬;;InSb磁電阻在交變磁場(chǎng)下的特性研究[J];大學(xué)物理實(shí)驗(yàn);2010年02期

5 黃寶歆;王軍華;張林;劉宜華;梅良模;;金屬/半導(dǎo)體顆粒膜中的特殊磁電阻效應(yīng)[J];壓電與聲光;2007年06期

6 鄭鵡,高居里,王艾玲,閻明朗;熱處理溫度對(duì)NiFe薄膜磁電阻的影響[J];磁記錄材料;1995年04期

7 方慶清;;磁電阻傳感器的應(yīng)用及其若干問題[J];磁性材料及器件;2012年02期

8 周仕明,陳良堯,朱偉榮,王昱,鄭衛(wèi)民,王亞棟,鄭玉祥,金慶原,錢佑華,董國(guó)勝,金曉峰,夏慧;Co-Al/Cu多層膜中層間耦合和磁電阻的振蕩[J];科學(xué)通報(bào);1996年18期

9 戶立春;劉韌;;微量Ag摻雜對(duì)La_(0.6)Sr_(0.15)Na_(0.1)□_(0.15)MnO_3材料性質(zhì)的影響[J];信息記錄材料;2008年02期

10 常春;唐雁坤;;納米La_(0.67)Sr_(0.33)MnO_3塊體的磁性與電輸運(yùn)特性研究[J];電子元件與材料;2013年03期

相關(guān)會(huì)議論文 前10條

1 曾燕萍;劉仲武;鄭志剛;余紅雅;曾德長(zhǎng);;FeCo-Si-N顆粒膜中的大的室溫正磁電阻[A];2012中國(guó)功能新材料學(xué)術(shù)論壇暨第三屆全國(guó)電磁材料及器件學(xué)術(shù)會(huì)議論文摘要集[C];2012年

2 ;固體化學(xué)與物理無機(jī)化學(xué)[A];中國(guó)化學(xué)會(huì)第二十四屆學(xué)術(shù)年會(huì)論文摘要集[C];2004年

3 王立錦;張輝;滕蛟;于廣華;;磁性薄膜材料磁電阻效應(yīng)測(cè)試系統(tǒng)[A];北京市高等教育學(xué)會(huì)技術(shù)物資研究會(huì)第九屆學(xué)術(shù)年會(huì)論文集[C];2007年

4 王立錦;張輝;張金中;滕蛟;于廣華;;磁性薄膜材料磁電阻效應(yīng)測(cè)試系統(tǒng)[A];北京高教學(xué)會(huì)實(shí)驗(yàn)室工作研究會(huì)2007年學(xué)術(shù)研討會(huì)論文集[C];2007年

5 唐貴德;劉興民;侯登錄;劉力虎;趙旭;聶向富;禹日成;余勇;靳常青;;空位含量x對(duì)La_(0.67)Sr_(0.18-x)Ag_(0.15)MnO_3塊體材料磁電阻效應(yīng)的影響[A];第四屆全國(guó)磁性薄膜與納米磁學(xué)會(huì)議論文集[C];2004年

6 韓秀峰;李飛飛;王偉寧;彭子龍;趙素芬;詹文山;;用于制備MRAM的高磁電阻磁性隧道結(jié)[A];第四屆全國(guó)磁性薄膜與納米磁學(xué)會(huì)議論文集[C];2004年

7 王選理;韓艷鈴;陳松;唐宇;黃宇陽(yáng);鄧文;;Fe摻雜對(duì)La_(2/3)Sr_(1/3)Mn_(1-X)Fe_XO_3磁電阻材料微觀缺陷的影響[A];第十屆全國(guó)正電子湮沒譜學(xué)會(huì)議論文集[C];2009年

8 陳鵬;都有為;朱建明;馮端;;晶粒表面覆蓋α-Fe_2O_3層的多晶Zn_(0.41)Fe_(2.59)O_4的巨大隧穿磁電阻[A];第四屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2001年

9 王先杰;隋郁;千正男;程金光;劉志國(guó);李妍;蘇文輝;;Sr_2Fe_(1-x)Al_xMoO_6(x=0,0.3)陶瓷的低場(chǎng)磁電阻效應(yīng)研究[A];第五屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集Ⅰ[C];2004年

10 衛(wèi)芬芬;熊曹水;熊永紅;;高阻相對(duì)La_(0.7)Ca_(0.2)Sr_(0.1)MnO_3磁電阻效應(yīng)的影響[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第2分冊(cè))[C];2010年

相關(guān)重要報(bào)紙文章 前1條

1 記者 桂運(yùn)安;二維納米材料實(shí)現(xiàn)最高負(fù)磁電阻效應(yīng)[N];安徽日?qǐng)?bào);2014年

相關(guān)博士學(xué)位論文 前10條

1 楊福江;基于躍遷理論的有機(jī)器件磁場(chǎng)效應(yīng)研究[D];山東大學(xué);2015年

2 李楊;密度泛函理論和非平衡格林函數(shù)方法對(duì)Co基Heusler合金磁電阻結(jié)界面特征及電子自旋極化輸運(yùn)的研究[D];西南大學(xué);2016年

3 曾燕萍;納米結(jié)構(gòu)鐵磁—非磁復(fù)合薄膜的制備、磁性和和磁電輸運(yùn)特性研究[D];華南理工大學(xué);2016年

4 丁軼;二氧化鉻外延薄膜制備及其磁電性能研究[D];武漢大學(xué);2015年

5 劉倩倩;鐵磁金屬/非磁材料異質(zhì)結(jié)各向異性磁電阻及界面效應(yīng)的研究[D];北京科技大學(xué);2017年

6 劉盼;高遷移率半導(dǎo)體材料的自旋注入[D];內(nèi)蒙古大學(xué);2017年

7 張昆;自旋記憶磁電阻與整流磁電阻的研究[D];山東大學(xué);2017年

8 徐潔;非化學(xué)計(jì)量比硫族銀化物奇異磁電阻效應(yīng)的機(jī)理研究[D];華中科技大學(xué);2009年

9 孫陽(yáng);鈣鈦礦結(jié)構(gòu)氧化物中的超大磁電阻效應(yīng)及相關(guān)物性[D];中國(guó)科學(xué)技術(shù)大學(xué);2001年

10 原曉波;摻雜和復(fù)合鈣鈦礦錳氧化物的室溫磁電阻增強(qiáng)[D];山東大學(xué);2006年

相關(guān)碩士學(xué)位論文 前10條

1 白雪亞;硅烯自旋閥結(jié)構(gòu)中的隧穿磁電阻效應(yīng)[D];河北師范大學(xué);2015年

2 曹艷玲;CoO_(1-v)薄膜與器件的磁性和輸運(yùn)特性研究[D];山東大學(xué);2015年

3 張正明;半金屬錳氧化物的磁電阻磁場(chǎng)依賴性和磁場(chǎng)退火效應(yīng)研究[D];南京大學(xué);2013年

4 余亙;線性正磁電阻材料硒化銀的摻雜改性研究[D];華中科技大學(xué);2014年

5 沈淵;Ni(Co)MnIn體系交換偏置、磁電阻、磁卡效應(yīng)研究[D];中北大學(xué);2016年

6 李彥;SrTiO_(3-δ)薄膜與WTe_2晶體的磁電阻效應(yīng)研究[D];北京交通大學(xué);2016年

7 李少波;常溫低磁場(chǎng)下La_(2/3)(Sr_(1-x)Ce_x)_(1/3)MnO_3的磁電阻特性及EPR譜研究[D];中國(guó)礦業(yè)大學(xué);2016年

8 高小洋;磁性異質(zhì)結(jié)中的磁電阻效應(yīng)和電致阻變效應(yīng)研究[D];青島大學(xué);2016年

9 楊倩;納米層狀鈷氧化物及其復(fù)合物性質(zhì)的研究[D];東南大學(xué);2016年

10 曹偉偉;納米La_(2/3)Sr_(1/3)MnO_3熒光特性及其復(fù)合材料的物性研究[D];東南大學(xué);2016年



本文編號(hào):1968929

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1968929.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9470b***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com