基于超聲背散射信號(hào)處理的碳纖維復(fù)合材料孔隙檢測(cè)研究
本文選題:碳纖維復(fù)合材料 + 超聲波檢測(cè)技術(shù) ; 參考:《浙江大學(xué)》2016年博士論文
【摘要】:碳纖維復(fù)合材料(Carbon Fibre Reinforced Plastics,簡(jiǎn)稱CFRP)在航空航天、車輛制造、大型工程建設(shè)等領(lǐng)域有著廣泛應(yīng)用。在制造和使用過程中,CFRP內(nèi)部難免會(huì)出現(xiàn)缺陷,超聲檢測(cè)技術(shù)則是CFRP缺陷無損檢測(cè)的主要手段之一。隨著CFRP制造技術(shù)的進(jìn)步,含有厚截面和曲面變厚度等區(qū)域的CFRP構(gòu)件已經(jīng)逐漸得到使用,這使得傳統(tǒng)的復(fù)合材料超聲檢測(cè)手段及信號(hào)處理技術(shù)已很難再滿足這些構(gòu)件中某些部分的檢測(cè)精度要求。針對(duì)這些材料的檢測(cè)難點(diǎn),本文以CFRP超聲檢測(cè)的相關(guān)基金項(xiàng)目為依托,對(duì)厚截面CFRP和曲面變厚度CFRP孔隙缺陷的超聲檢測(cè)技術(shù)進(jìn)行研究,全文的研究工作及成果如下。(1)對(duì)各類CFRP孔隙超聲檢測(cè)方法進(jìn)行分析,得到各方法的特點(diǎn)。同時(shí)采用金相實(shí)驗(yàn)法對(duì)論文涉及的CFRP的孔隙進(jìn)行觀察與分析,得到孔隙的形態(tài)與分布特征。根據(jù)上述分析結(jié)果提出了基于超聲背散射信號(hào)處理的厚截面CFRP和曲面變厚度CFRP孔隙檢測(cè)方法。(2)對(duì)聲波在層狀粘滯媒質(zhì)中的反射與透射進(jìn)行推導(dǎo),得到聲波反射系數(shù)分布函數(shù)頻域模型。采用該模型對(duì)多層CFRP聲波反射系數(shù)進(jìn)行計(jì)算,得到超聲波在層狀CFRP中產(chǎn)生共振的條件及CFRP層數(shù)對(duì)共振的影響。進(jìn)一步采用該頻域模型對(duì)含孔隙層狀CFRP聲波反射系數(shù)進(jìn)行計(jì)算,得到孔隙含量和分布對(duì)超聲波共振的影響。同時(shí),還對(duì)層狀CFRP超聲脈沖反射信號(hào)各成分特征進(jìn)行分析,在此基礎(chǔ)上建立了超聲檢測(cè)信號(hào)的時(shí)域及頻域模型。(3)提出了基于超聲背散射信號(hào)處理的厚截面CFRP局部集中孔隙缺陷識(shí)別方法。根據(jù)超聲背散射信號(hào)特征將其劃分為近表面信號(hào)和遠(yuǎn)表面信號(hào)。針對(duì)近表面信號(hào)提出了基于共振結(jié)構(gòu)噪聲特征與基于共振結(jié)構(gòu)噪聲去除這兩種處理方法。針對(duì)遠(yuǎn)表面信號(hào)則主要提出了基于信號(hào)相關(guān)分析的小波變換模極大值去噪方法。采用上述方法對(duì)厚截面CFRP局部集中孔隙進(jìn)行識(shí)別,通過破壞性金相實(shí)驗(yàn)驗(yàn)證了上述信號(hào)處理方法的可行性。(4)提出了基于超聲背散射信號(hào)提升小波分解處理的曲面變厚度CFRP孔隙缺陷識(shí)別方法。通過金相實(shí)驗(yàn)測(cè)定了超聲檢測(cè)完畢的曲面變厚度CFRP試塊孔隙率,同時(shí)分析了超聲脈沖反射信號(hào)的特征。采用提升小波變換對(duì)超聲背散射信號(hào)進(jìn)行分解并分析得到了原始信號(hào)與各分解信號(hào)的特征。進(jìn)一步對(duì)原始信號(hào)與選出的分解信號(hào)的特征隨孔隙率的變化關(guān)系進(jìn)行分析,結(jié)果表明最優(yōu)分解信號(hào)特征比原始信號(hào)特征能更好地表征材料孔隙率。(5)提出了基于背散射信號(hào)能量特征的厚截面CFRP超聲C掃描成像方法和基于背散射分解信號(hào)能量特征的曲面變厚度CFRP超聲C掃描成像方法。同時(shí),在基于第(3)點(diǎn)研究的基礎(chǔ)上提出了厚截面CFRP超聲背散射信號(hào)特征三維成像技術(shù),生成的三維圖像能夠直觀地對(duì)厚截面CFRP局部集中孔隙進(jìn)行表征。
[Abstract]:Carbon Fibre Reinforced Plastics, (CFRP) is widely used in aerospace, vehicle manufacturing, large engineering construction and so on. In the process of manufacture and use, defects will inevitably appear in CFRP, and ultrasonic testing technology is one of the main methods for nondestructive testing of CFRP defects. With the development of CFRP manufacturing technology, CFRP components with thick cross-sections and curved surfaces with variable thickness have been gradually used. This makes it difficult for traditional ultrasonic testing methods and signal processing techniques of composite materials to meet the precision requirements of some parts of these components. In view of the difficulties of testing these materials, this paper studies the ultrasonic detection technology of thick section CFRP and curved surface variable thickness CFRP pore defect based on the related fund items of CFRP ultrasonic detection. The research work and results are as follows: 1) the ultrasonic testing methods of CFRP pore are analyzed, and the characteristics of each method are obtained. At the same time, the porosity of CFRP was observed and analyzed by metallographic experiment, and the pore morphology and distribution characteristics were obtained. Based on the above analysis results, a method of detecting thick section CFRP and curved surface variable thickness CFRP pore based on ultrasonic backscattering signal processing is proposed to deduce the reflection and transmission of acoustic waves in layered viscous media. The frequency domain model of acoustic reflection coefficient distribution function is obtained. By using this model, the reflection coefficients of multilayer CFRP sound waves are calculated, and the conditions of ultrasonic resonance in layered CFRP and the influence of the number of CFRP layers on the resonance are obtained. Furthermore, the frequency domain model is used to calculate the acoustic reflection coefficient of layered CFRP with pores, and the effects of pore content and distribution on ultrasonic resonance are obtained. At the same time, the characteristics of each component of the layered CFRP ultrasonic pulse reflection signal are analyzed. On this basis, the time-domain and frequency-domain models of ultrasonic detection signals are established. A method for identifying local concentrated pore defects in thick cross-section CFRP based on ultrasonic backscattering signal processing is proposed. According to the characteristics of ultrasonic backscattering signal, it is divided into near surface signal and far surface signal. In this paper, two processing methods for near-surface signals are proposed, which are based on resonance structural noise characteristics and resonance structural noise removal. For the far surface signal, a wavelet transform modulus maximum denoising method based on signal correlation analysis is proposed. The method is used to identify the local concentrated pores in thick section CFRP. The feasibility of the above signal processing method is verified by destructive metallographic experiments. (4) A surface variable thickness CFRP pore defect identification method based on ultrasonic backscattering signal lifting wavelet decomposition is proposed. The porosity of the curved surface CFRP specimen with varying thickness was measured by metallographic experiments and the characteristics of ultrasonic pulse reflection signal were analyzed at the same time. The lifting wavelet transform is used to decompose the ultrasonic backscattering signal and the characteristics of the original signal and the decomposed signal are obtained. Further, the relationship between the characteristics of the original signal and the selected decomposition signal with porosity is analyzed. The results show that the optimal decomposed signal feature can better characterize the material porosity than the original signal feature.) A thick cross-section CFRP ultrasonic C-scan imaging method based on backscatter signal energy characteristics and a backscatter decomposition signal energy are proposed. The method of curved surface variable thickness CFRP ultrasonic C scan imaging is presented in this paper. At the same time, based on the research of the third point, a 3D imaging technique of thick cross-section CFRP ultrasonic backscattering signal is proposed. The generated 3D image can directly characterize the local concentrated pores of the thick cross-section CFRP.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TB33;TN911.7
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王璐;李鵬志;王正;王蕊;;基于CT掃描的2A12鋁合金疲勞裂紋三維重建方法研究[J];機(jī)械工程學(xué)報(bào);2015年24期
2 曲中黨;吳蔚;賀日政;高銳;;基于S變換的軟閾值濾波在深地震反射數(shù)據(jù)處理中的應(yīng)用[J];地球物理學(xué)報(bào);2015年09期
3 趙凱;陳虹;張婧;于今;張定金;;碳纖維復(fù)合材料在無人機(jī)上的應(yīng)用[J];高科技纖維與應(yīng)用;2015年04期
4 孫昌立;剛鐵;劉斌;王常璽;王龍;;基于超聲相控陣的FSW缺陷三維可視化[J];焊接學(xué)報(bào);2015年04期
5 馬立敏;張嘉振;岳廣全;劉建光;薛佳;;復(fù)合材料在新一代大型民用飛機(jī)中的應(yīng)用[J];復(fù)合材料學(xué)報(bào);2015年02期
6 郭遠(yuǎn)晶;魏燕定;周曉軍;唐f ;;基于S變換譜閾值去噪的沖擊特征提取方法[J];振動(dòng)與沖擊;2014年21期
7 郭遠(yuǎn)晶;魏燕定;周曉軍;傅雷;;S變換用于滾動(dòng)軸承故障信號(hào)沖擊特征提取[J];振動(dòng).測(cè)試與診斷;2014年05期
8 周正干;孫廣開;馬保全;李洋;;先進(jìn)復(fù)合材料超聲無損檢測(cè)新技術(shù)的應(yīng)用[J];科技導(dǎo)報(bào);2014年09期
9 李釗;周曉軍;楊辰龍;王建龍;徐建勇;鄭慧峰;;變厚度碳纖維復(fù)合材料孔隙率超聲衰減模型[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2014年07期
10 丁珊珊;羅忠兵;陳軍;劉歡;林莉;;基于數(shù)值計(jì)算方法的CFRP層板二維細(xì)觀形貌多孔隙超聲散射衰減[J];復(fù)合材料學(xué)報(bào);2014年03期
相關(guān)會(huì)議論文 前1條
1 郭戰(zhàn)勝;張俊乾;居建國(guó);何利娜;;厚截面復(fù)合材料的制造工藝及其力學(xué)問題[A];第十五屆全國(guó)復(fù)合材料學(xué)術(shù)會(huì)議論文集(上冊(cè))[C];2008年
相關(guān)博士學(xué)位論文 前5條
1 李釗;碳纖維復(fù)合材料孔隙率超聲檢測(cè)與評(píng)價(jià)技術(shù)研究[D];浙江大學(xué);2014年
2 張璐;含分層缺陷復(fù)合材料層合板分層擴(kuò)展行為與數(shù)值模擬研究[D];哈爾濱工業(yè)大學(xué);2012年
3 張琦;大容量高保真海底管道超聲檢測(cè)數(shù)據(jù)處理技術(shù)研究[D];上海交通大學(xué);2008年
4 劉繼忠;CFRP孔隙率超聲無損檢測(cè)研究與系統(tǒng)實(shí)現(xiàn)[D];浙江大學(xué);2005年
5 張鳳鵬;纖維增強(qiáng)層合復(fù)合材料分層損傷行為的研究[D];東北大學(xué);2000年
相關(guān)碩士學(xué)位論文 前5條
1 王建龍;石油管道軸向缺陷的超聲導(dǎo)波檢測(cè)技術(shù)研究[D];浙江大學(xué);2014年
2 林娜;RTM/紡織復(fù)合材料微缺陷非線性評(píng)價(jià)方法研究[D];南昌航空大學(xué);2013年
3 徐建勇;碳纖維復(fù)合材料孔隙缺陷超聲檢測(cè)技術(shù)研究[D];浙江大學(xué);2013年
4 羅明;碳纖維增強(qiáng)樹脂基復(fù)合材料孔隙率超聲無損檢測(cè)[D];大連理工大學(xué);2007年
5 宋立軍;復(fù)合材料孔隙率檢測(cè)方法及其實(shí)現(xiàn)技術(shù)的研究[D];浙江大學(xué);2005年
,本文編號(hào):1947409
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1947409.html