60GHz硅基毫米波接收機關(guān)鍵技術(shù)研究與芯片設(shè)計
發(fā)布時間:2018-05-25 05:20
本文選題:60 + GHz; 參考:《東南大學(xué)》2016年博士論文
【摘要】:隨著現(xiàn)代社會對無線通信速率要求的不斷提高,在很多場合需要支持?jǐn)?shù)吉比特每秒的傳輸速率。本世紀(jì)以來,各國相繼開放了60 GHz附近連續(xù)的5-7 GHz帶寬用于毫米波短距離高速傳輸應(yīng)用,比如無線個域網(wǎng)(WPAN)和無線高清多媒體(wireless HD)等。這極大地激發(fā)了學(xué)術(shù)與工業(yè)界對60 GHz毫米波接收機的研究熱情,研究成果也不斷涌現(xiàn),而在這些成果中硅基CMOS工藝占據(jù)了主導(dǎo)地位。作為一種高集成度及低成本的工藝,CMOS工藝的進(jìn)步使之在毫米波頻段已經(jīng)具有足夠的吸引力。研究60 GHz硅基毫米波接收機對60 GHz通信技術(shù)的普及具有特別重要的意義。本文基于65nm CMOS工藝對60 GHz毫米波接收機及其關(guān)鍵電路進(jìn)行了深入的研究,這些電路包括低噪聲放大器、混頻器、中頻放大器、低通濾波器及可變增益放大器等。本文討論了CMOS毫米波電路設(shè)計中的基本問題。毫米波電路設(shè)計區(qū)別于吉赫茲電路的特點包括晶體管工作在接近其極限頻率、信號波長短造成互連線的分布效應(yīng)不可忽略、寄生參數(shù)對電路工作狀態(tài)影響大等,這些特點決定了毫米波電路的設(shè)計方法與思路。分析了CMOS工藝中包括傳輸線、電感、電容和晶體管等基本元器件在毫米波頻段的特性及在電路設(shè)計中的考慮。介紹了用電磁仿真軟件HFSS建立片上無源元件模型的過程,通過兩種巴倫,即變壓器巴倫和Marchand巴倫為例進(jìn)行了建模與仿真,并分析了它們在阻性與容性負(fù)載情況下的特性。本文分析了MOS晶體管在各極端接阻抗時的輸入阻抗、跨導(dǎo)與噪聲性能,在后續(xù)電路設(shè)計中可直接引用這些結(jié)論。為了獲得足夠的增益,本文中的毫米波低噪聲放大器采用了多級級聯(lián)的結(jié)構(gòu),并針對每級的特點進(jìn)行了優(yōu)化設(shè)計。在毫米波低噪聲放大器的第一級采用了共源結(jié)構(gòu)以同時獲得較好的輸入阻抗匹配與噪聲性能,而在后續(xù)各級使用共源共柵結(jié)構(gòu)以提高隔離度并獲得較高的增益。在本文中,為了改善低噪聲放大器的輸入匹配、噪聲、增益及帶寬等性能,采用了輸入LC階梯網(wǎng)絡(luò)、共源共柵中和電感、柵極反饋電感和級間T型網(wǎng)絡(luò)等電感性能提升技術(shù)。所設(shè)計出的低噪聲放大器具有17.3 dB的增益和20 GHz的帶寬,噪聲系數(shù)小于5 dB,由此總結(jié)出了改進(jìn)的60 GHz低噪聲放大器的公式化設(shè)計方法。本文提出了基于電流復(fù)用正反饋結(jié)構(gòu)的低噪聲放大器,并分析了其穩(wěn)定性、跨導(dǎo)及噪聲性能,測試結(jié)果表明其在小于10 mW的功耗時具有14.9 dB的增益和16 GHz的帶寬,揭示了其低功耗應(yīng)用潛力。本文指出了傳統(tǒng)Gilbert結(jié)構(gòu)混頻器直接應(yīng)用于基于滑動中頻結(jié)構(gòu)的60 GHz接收機中出現(xiàn)的問題,尤其是混頻器的中頻帶寬相對信道帶寬較窄。為了有效解決這些問題,本文基于Gilbe rt結(jié)構(gòu)提出了帶有LCR串聯(lián)諧振網(wǎng)絡(luò)和交叉耦合對的混頻器結(jié)構(gòu)。這種結(jié)構(gòu)在Gilbert跨導(dǎo)級采用了電流注入及電感調(diào)諧技術(shù),而在負(fù)載級加入了并聯(lián)的LCR串聯(lián)諧振網(wǎng)絡(luò)和交叉耦合對引入負(fù)電導(dǎo),以同時擴展帶寬和彌補增益的損失。通過對這種結(jié)構(gòu)的增益與帶寬進(jìn)行分析,得到了其增益帶寬積隨負(fù)電導(dǎo)增加而升高的結(jié)論,測試結(jié)果表明其增益為3 dB時中頻帶寬為6.5-17.5 GHz,而增益為7.5 dB時具有8 GHz的中頻帶寬,證明了其同時具有適度增益與寬帶特性。本文對應(yīng)用于60 GHz通信系統(tǒng)的接收鏈路進(jìn)行了集成。將整個鏈路分為兩個芯片,芯片1包括低噪聲放大器、第一下變頻混頻器和中頻放大器,芯片2包括I/Q正交混頻器、除二分頻器、低通濾波器及可變增益放大器等。接收機采用了基于滑動中頻的二次變頻結(jié)構(gòu),其中第一本振為48 GHz,由24 GHz本振源與倍頻器得到,中頻位于12 GHz附近,第二本振為正交信號,由24 GHz本振源經(jīng)除二分頻器得到。由于60 GHz通信系統(tǒng)中單信道帶寬超過了2 GHz,接收鏈路中的所有模塊都采用了寬帶設(shè)計技術(shù),本文對這些技術(shù)進(jìn)行了討論。測試結(jié)果表明這兩個芯片功能正確,性能良好,證明了CMOS工藝在60GHz通信系統(tǒng)中具有廣闊的應(yīng)用前景。
[Abstract]:With the increasing demand for wireless communication rate in modern society, many occasions need to support the transmission rate of a number of bits per second on many occasions. Since this century, countries have opened 60 GHz continuous 5-7 GHz bandwidth for millimeter wave short distance high-speed transmission applications, such as WPAN and wireless HD It has greatly stimulated the research enthusiasm of the academic and industrial circles on the 60 GHz millimeter wave receiver, and the research results are also emerging. In these results, the silicon based CMOS process occupies the dominant position. As a high integration and low cost process, the progress of the CMOS process has made it attractive at the millimeter wave band. The 60 GHz silicon based millimeter wave receiver is of special significance for the popularization of the 60 GHz communication technology. Based on the 65nm CMOS process, the 60 GHz millimeter wave receiver and its key circuits are deeply studied. These circuits include low noise amplifier, mixer, medium frequency amplifier, low pass filter and variable gain amplifier. The basic problems in the design of CMOS millimeter wave circuit are discussed in this paper. The characteristics of the millimeter wave circuit design differ from the jilt Hertz circuit, including the transistor working near its limit frequency, the short signal wavelength, the distribution effect of the interconnects can not be ignored, the parasitic parameters affect the working state of the circuit and so on. These characteristics determine the millimeter wave circuit. This paper analyzes the characteristics of the basic components including the transmission lines, inductors, capacitors and transistors in the millimeter wave band and the consideration of the design of the circuit in the CMOS process. The process of establishing a passive component model on the chip with the electromagnetic simulation software HFSS is introduced. Two balun, Baren transformer and Marchand Baron are used as an example. In this paper, the input impedance, transconductance and noise performance of MOS transistors at the extreme impedance are analyzed. The results can be directly quoted in the subsequent circuit design. In order to gain sufficient gain, the millimeter wave low noise amplifier in this paper is used in this paper. The multi-stage cascade structure is designed and optimized for the characteristics of each level. The first stage of the millimeter wave low noise amplifier adopts a common source structure to obtain better input impedance matching and noise performance, and the common source grid structure is used at the subsequent levels to improve isolation and gain higher gain. In this paper, the purpose of this paper is to improve the degree of isolation and gain higher gain. The input matching, noise, gain and bandwidth of the good low noise amplifier uses the input LC ladder network, common source co gate neutralization inductance, gate feedback inductor and interstage T network and other inductor performance enhancement techniques. The designed low noise amplifier has 17.3 dB gain and 20 GHz bandwidth, and the noise coefficient is less than 5 dB. An improved formula design method for the 60 GHz low noise amplifier is presented. This paper presents a low noise amplifier based on the current reuse positive feedback structure, and analyses its stability, transconductance and noise performance. The test results show that it has an increase of 14.9 dB and a bandwidth of 16 GHz in less than 10 mW power consumption, and reveals its low power application potential. In this paper, this paper points out that the traditional Gilbert structure mixer is directly applied to the 60 GHz receiver based on the sliding medium frequency structure, especially the middle frequency bandwidth of the mixer is relatively narrow. In order to solve these problems effectively, this paper proposes a mixed LCR series resonant network and a cross coupling pair based on the Gilbe RT structure. This structure uses current injection and inductance tuning at the Gilbert transconductance stage, while a parallel LCR series resonant network and a cross coupling pair are added at the load level to extend the bandwidth and compensate for the loss of the gain. The gain bandwidth is analyzed and the gain bandwidth is obtained by analyzing the gain and bandwidth of this structure. The product increases with the increase of negative conductance. The test results show that the median frequency bandwidth is 6.5-17.5 GHz when the gain is 3 dB, while the gain is 7.5 dB with 8 GHz medium frequency bandwidth. It is proved that it has a moderate gain and broadband characteristics. This paper integrates the link of the 60 GHz communication system and divides the whole link into two. The chip 1 includes a low noise amplifier, a first down conversion mixer and a medium frequency amplifier, and the chip 2 includes a I/Q quadrature mixer, with the exception of a two frequency divider, a low pass filter and a variable gain amplifier, etc. the receiver uses a two frequency conversion structure based on a sliding medium frequency, in which the first oscillator is 48 GHz, and is obtained by a 24 GHz oscillator source and a doubler. The frequency is located near 12 GHz, and second is a quadrature signal, which is obtained by a two divider by the 24 GHz source. Because the single channel bandwidth of the 60 GHz communication system is more than 2 GHz, all the modules in the receiving link have adopted the broadband design technology. This paper discusses these techniques. The test results show that the two chips have the correct functions. It is proved that CMOS technology has broad application prospects in 60GHz communication system.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TN851
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何冬婭;;“6~12GHz衰減標(biāo)準(zhǔn)裝置”技術(shù)鑒定會在京召開[J];宇航計測技術(shù);1985年05期
2 ;6~18GHz開關(guān)放大器[J];國外電子元器件;2001年01期
3 鄒偉剛;王鑫;肖江南;曹子崢;陳林;余建軍;;基于訓(xùn)練序列進(jìn)行系統(tǒng)優(yōu)化的60GHz正交頻分復(fù)用-光載無線通信系統(tǒng)[J];中國激光;2011年05期
4 繆e,
本文編號:1932256
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1932256.html
最近更新
教材專著