氣動肌肉驅動的仿青蛙跳躍機器人及其關鍵技術的研究
發(fā)布時間:2018-05-21 08:55
本文選題:青蛙 + 跳躍機器人; 參考:《哈爾濱工業(yè)大學》2016年博士論文
【摘要】:跳躍機器人可以廣泛地應用于考古、星際探測、反恐和資源勘探等領域。相對于輪式和行走式機器人,跳躍式機器人的特點是利用跳躍運動前進,具有移動速度快、越障能力強的特點。但是跳躍機器人的運動過程中與地面間的接觸情況不斷變化,存在著與地面碰撞沖擊,使得機器人的動力學過程存在著連續(xù)狀態(tài)和碰撞離散狀態(tài)相混雜的特點,具有高度的非線性。另外在給定特定任務的情況下,如何合理規(guī)劃任務空間和關節(jié)空間的軌跡,也是一個難點。傳統(tǒng)的跳躍機器人多采用“電機+彈簧”的方式為跳躍運動提供動力,這種傳動方式采用齒輪、棘輪等復雜的傳動機構,容易出現(xiàn)卡死等故障,本文針對這種不足,采用氣動人工肌肉作為動力裝置,利用氣動肌肉的輸出力大、傳動裝置簡單的優(yōu)點,進行跳躍機器人的機構設計。但是氣動肌肉具有高度的非線性,力-位移存在滯環(huán)特性,力學模型的建立是一個難點。由于力學模型非線性和氣體可壓縮性特點,精確的位置控制方法的研究也是一個難點。本文在課題組對青蛙的生理結構和跳躍特點已經進行深入研究的基礎上,以氣動肌肉作為驅動器,構建仿青蛙跳躍機器人本體,對機器人的運動學和動力學特性、氣動肌肉的力學模型、實現(xiàn)規(guī)則地形下的特定跳躍任務時的軌跡規(guī)劃、氣動肌肉驅動關節(jié)控制策略和機器人運動控制器等問題進行研究。本文首先簡要分析青蛙的生理結構和跳躍運動特點,建立青蛙跳躍運動等效六桿模型,在ADAMS中對六桿機構進行優(yōu)化仿真,為機器人機構設計提供參考;對機器人的后肢進行設計,并設計出前肢和整機;根據(jù)機器人的狀態(tài)信息采集的需要,選用相關傳感器。分析機機器人跳躍過程的欠驅動特性,將跳躍過程劃分為不同的子相,建立統(tǒng)一的運動學模型;對跳躍過程的動力學特性進行分析,基于拉格朗日方程分別建立連續(xù)動力學方程和碰撞離散相動力學方程,并分析不同子相運動狀態(tài)切換的條件。氣動人工肌肉的力學特性是機器人設計和控制的基礎,因此對氣動人工肌肉的力學特性進行研究。采用機理建模和實驗建模兩種手段對氣動肌肉的力學行為進行建模。機理模型以Chou理想模型為基礎,考慮橡膠壁彈性、纖維網(wǎng)彈性和內部摩擦等因素的影響;為了實際控制的需要,利用實驗手段了建立現(xiàn)象模型;對于PAM內部復雜的充氣和排氣過程,利用實驗數(shù)據(jù)建立了排氣階段和充氣階段的現(xiàn)象模型。以規(guī)則地形下的給定跳躍高度和遠度為任務目標,研究軌跡規(guī)劃問題。對欠驅動關節(jié)的求解問題進行深入分析。以地面對機器人反作用力最大值最小為目標,對任務空間的軌跡進行優(yōu)化;在任務空間軌跡規(guī)劃的基礎上,以消耗的主動力矩最小為目標,對關節(jié)空間進行軌跡優(yōu)化,并進行仿真。設計機器人的運動控制器。對氣動肌肉驅動關節(jié)的位置控制策略進行研究,構建單自由度的氣動肌肉驅動關節(jié)實驗平臺,以實驗平臺動力學模型和所建立的氣動肌肉實驗模型為基礎,進行PID串級位置控制方法和RBFNN-PID串級位置控制方法的研究;跉鈩蛹∪怛寗雨P節(jié)的位置控制策略,建立機器人的控制器,使用RBFNN-PID串級控制方法對各個關節(jié)分別進行控制,并進行matlab/adams聯(lián)合仿真。設計了機器人的控制系統(tǒng),并進行位姿調整和跳躍運動的實驗研究。以嵌入式微控制器為核心,構建機器人的控制系統(tǒng)。對單條后肢的位姿調整性能和跳躍性能進行實驗研究,驗證氣動肌肉驅動關節(jié)控制策略的有效性和軌跡規(guī)劃方法的正確性;對機器人的位姿調整和跳躍性能進行實驗研究,驗證機器人控制器的有效性、軌跡規(guī)劃方案的可行性以及采用氣動肌肉作為驅動器構建跳躍機器人的可行性。
[Abstract]:Jumping robots can be widely used in the fields of archaeology, interstellar detection, counter-terrorism and resource exploration. Compared with wheeled and walking robots, jumping robots are characterized by jumping motion, fast moving speed, and strong ability to cross obstacle. But the contact with the ground during the movement of the jumper is not the same. There is a collision with the ground, which makes the dynamic process of the robot have the characteristics of continuous state and collision discrete state, and it has high nonlinearity. In the case of given specific task, it is also a difficult point to plan the task space and the trajectory of joint space reasonably. The traditional jumping robot is also a difficult problem. By using the "motor + Spring" way to provide power for jumping movement, this transmission mode uses complex transmission gear, ratchet and other complex transmission mechanism, easy to die and other faults. In this paper, the pneumatic artificial muscle is used as the power device, the output force of the pneumatic muscle is large and the advantages of the simple transmission device are leaped. The mechanism of the robot is designed. However, the pneumatic muscle has a high nonlinearity, the force displacement has the hysteresis characteristics. The establishment of the mechanical model is a difficult point. The study of the precise position control method is also a difficult point because of the mechanical model nonlinearity and the gas compressibility. On the basis of the in-depth study, a frog jumping robot is constructed with the pneumatic muscle as the driver, the kinematics and dynamics characteristics of the robot, the mechanical model of the pneumatic muscle, the trajectory planning of the specific jumping task under the regular terrain, the control strategy of the pneumatic muscle driving joint and the robot motion control. This paper first briefly analyzes the physiological structure and jumping characteristics of frogs, establishes the equivalent six bar model of frog jumping movement, optimizes the simulation of the six bar mechanism in ADAMS, provides reference for the robot mechanism design, designs the hind limbs of the robot, and designs the forelimb and the whole machine; according to the machine, the machine is designed and the machine is designed. For the needs of the state information collection, the related sensors are selected. The underactuating characteristics of the jumping process of the robot are analyzed, the jumping process is divided into different subphases and a unified kinematic model is established. The dynamic characteristics of the jumping process are analyzed, and the continuous dynamic equation and collision discrete phase are established based on the Lagrangian square path respectively. Dynamic equations and analysis of the conditions for the switching of different subphase motion states. The mechanical characteristics of the pneumatic artificial muscles are the basis of the robot design and control. Therefore, the mechanical properties of the pneumatic artificial muscles are studied. The mechanical behavior of the pneumatic muscles is modeled by two means of mechanism modeling and experimental modeling. The mechanism model is Chou On the basis of the ideal model, the effects of rubber wall elasticity, fiber net elasticity and internal friction are considered, and the phenomenon model is established by experimental means for the needs of actual control. For the complicated aeration and exhaust processes in PAM, the phenomenon model of the exhaust stage and the inflating stage is established by the experimental data. With the given jumping height and distance as the task target, the trajectory planning problem is studied. The problem of solving the underactuated joint is deeply analyzed. In order to minimize the maximum value of the robot counterforce, the trajectory of the task space is optimized. On the basis of the task space trajectory planning, the goal is to minimize the active torque. The joint space is optimized and simulated. The motion controller of the robot is designed. The position control strategy of the pneumatic muscle driven joint is studied. The experimental platform of a single degree of freedom pneumatic muscle driving joint is constructed. Based on the dynamic model of the experimental platform and the established experimental model of the pneumatic muscle, the PID cascade is carried out. The position control method and the RBFNN-PID cascade position control method are studied. Based on the position control strategy of the pneumatic muscle driven joint, the robot controller is established, the RBFNN-PID cascade control method is used to control the joints respectively, and the joint simulation of the matlab/adams is carried out. The control system of the robot is set up and the position and attitude adjustment is set up. The experimental research on the whole and jump movement. The control system of the robot is constructed with the embedded micro controller as the core. The experimental study on the position and posture adjustment performance and jumping performance of the single hind limbs is carried out to verify the validity of the pneumatic muscle driving joint control strategy and the correctness of the trajectory planning method, and the position and posture adjustment and jumping ability of the robot. The experiment can be carried out to verify the effectiveness of the robot controller, the feasibility of the trajectory planning scheme and the feasibility of using the pneumatic muscle as the driver to construct the hopping robot.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TP242
【相似文獻】
相關期刊論文 前10條
1 陳林;奚如如;王興松;;套索驅動細長機器人的初步設計與試驗[J];機電工程;2011年03期
2 謝芝馨;;蘇聯(lián)機器人技術述評[J];機械與電子;1989年04期
3 羅飛,,余達太;主動式控制──機器人抑振控制的有效方式[J];機器人;1995年04期
4 盧桂章;當前高技術發(fā)展的前沿——機器人技術[J];天津科技;1995年01期
5 蘇陸;日本機器人技術與產品[J];全球科技經濟w
本文編號:1918546
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1918546.html
最近更新
教材專著