天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 信息類博士論文 >

高效高功率因數(shù)三相電源控制策略研究

發(fā)布時(shí)間:2018-05-12 15:13

  本文選題:三相電源 + 復(fù)合有源箝位。 參考:《西安理工大學(xué)》2016年博士論文


【摘要】:電力電子變換器是電能利用的重要轉(zhuǎn)換裝置,三相電源是將三相工頻交流電變?yōu)橹绷麟姷碾娏﹄娮友b置,傳統(tǒng)的三相電源采用二極管或晶閘管整流,會(huì)引起諧波污染、無功損耗增大、電磁干擾等負(fù)面效應(yīng);谲涢_關(guān)技術(shù)的PWM有源功率因數(shù)校正變換器具有高功率因數(shù)和高效率,可以解決傳統(tǒng)三相電源存在的問題,因此,在大功率不間斷電源、無功補(bǔ)償、太陽能發(fā)電以及交直流傳動(dòng)系統(tǒng)等領(lǐng)域取代傳統(tǒng)裝置,有著廣闊的應(yīng)用前景。本文結(jié)合單晶爐加熱電源的技術(shù)要求,采用先進(jìn)的拓?fù)浣Y(jié)構(gòu),將功率因數(shù)校正,軟開關(guān)技術(shù)與先進(jìn)控制算法有機(jī)地結(jié)合,設(shè)計(jì)了一套高效率、高功率因數(shù)、高性能的三相電源樣機(jī),并針對(duì)該對(duì)象的控制策略進(jìn)行了深入研究,主要研究?jī)?nèi)容如下(1)在分析現(xiàn)有拓?fù)涞幕A(chǔ)上,選擇了前級(jí)復(fù)合有源箝位軟開關(guān)三相功率因數(shù)校正變換器(CACZVS三相PFC變換器)配合后級(jí)移相全橋零電壓零電流(FB-ZVZCS)DC/DC變換器的兩級(jí)結(jié)構(gòu)的三相電源拓?fù)洹a槍?duì)單晶爐用加熱電源對(duì)于高功率因數(shù)和高效率的要求,本文在對(duì)比分析了不同方案的拓?fù)浣Y(jié)構(gòu),軟開關(guān)條件及相關(guān)調(diào)制方法的基礎(chǔ)上,選擇一種新型復(fù)合有源箝位軟開關(guān)三相功率因數(shù)校正變換器(CACZVS三相PFC變換器)實(shí)現(xiàn)功率因數(shù)校正和輸出直流母線電壓控制,后級(jí)采用移相全橋零電壓零電流(FB-ZVZCS)DC/DC變換器實(shí)現(xiàn)輸出電壓和功率的控制。本文分析了三相電源的工作機(jī)理、等效電路,在此基礎(chǔ)上建立了相應(yīng)數(shù)學(xué)模型,為后續(xù)控制方法研究提供了條件。(2)針對(duì)變換器控制參數(shù)多、相互耦合、難以選擇的問題,提出多目標(biāo)混沌粒子群優(yōu)化算法設(shè)計(jì)控制器參數(shù)以提高變換器性能。本文以前級(jí)CACZVS三相PFC變換器基于兩相旋轉(zhuǎn)坐標(biāo)系下的傳統(tǒng)前饋解耦的比例積分(PI)控制器參數(shù)優(yōu)化問題為例,給出了系統(tǒng)的參數(shù)優(yōu)化方法和步驟。三相PFC變換器的控制涉及交軸電流、直軸電流和輸出電壓三個(gè)控制閉環(huán),有3個(gè)PI控制器的6個(gè)控制參數(shù)需要設(shè)計(jì),控制參數(shù)之間存在相互耦合,優(yōu)化目標(biāo)需綜合考慮輸出直流電壓快速性及準(zhǔn)確性,輸入單位功率因數(shù)等因素,這是一個(gè)復(fù)雜的多參數(shù)(多維)多目標(biāo)優(yōu)化問題,針對(duì)這一問題,本文提出(1)基于派瑞托(Pareto)理論的粒子群優(yōu)化算法,解決多個(gè)待優(yōu)化目標(biāo)的自動(dòng)均衡問題。(2)單向耦合映像格子的時(shí)空混沌模型產(chǎn)生多維初始粒子群方法,解決了傳統(tǒng)單維混沌粒子群方法的問題,提高了粒子群方法的搜索速度,降低陷入局部最優(yōu)解的概率。(3)設(shè)計(jì)了三種適合的非線性控制方法,以降低電源參數(shù)不確定(或變化)對(duì)系統(tǒng)性能的影響,提升了三相電源的控制性能。前級(jí)CACZVS三相PFC變換器具有非線性、強(qiáng)耦合、參數(shù)不確定和負(fù)載等參數(shù)隨工況時(shí)變等特征,本文提出以下控制策略用來提升變換器控制性能,具體方法包括:a)基于負(fù)載滑模觀測(cè)器的反饋線性化控制方法。該方法針對(duì)不確定負(fù)載采用滑模觀測(cè)器來在線估計(jì)負(fù)載參數(shù),同時(shí),針對(duì)三相PWM變換器的非線性強(qiáng)耦合特性,設(shè)計(jì)了對(duì)應(yīng)的反饋線性化控制器,將估計(jì)所得的負(fù)載值應(yīng)用到電壓環(huán)反饋線性化控制器當(dāng)中,以提升控制器對(duì)于負(fù)載時(shí)變的適應(yīng)能力;b)考慮負(fù)載及輸出濾波電容不確定,設(shè)計(jì)了針對(duì)電壓環(huán)負(fù)載和輸出濾波電容未知的自適應(yīng)控制器,電流環(huán)采用反饋線性化控制器,該控制方案參數(shù)少且易于選取,對(duì)負(fù)載變化和電容參數(shù)不確定具有更好的適應(yīng)性;c)提出了考慮輸入電壓波動(dòng),輸入濾波電感、濾波電感等效電阻、輸出濾波電容以及負(fù)載參數(shù)不確定的魯棒滑模變結(jié)構(gòu)控制方法。與傳統(tǒng)反饋線性化方法相比,本文方法通過增加魯棒項(xiàng),提高了系統(tǒng)在參數(shù)不確定及參數(shù)變化時(shí)的魯棒性,同時(shí)邊界層漸縮方法的采用減小了控制量的顫振,使輸入三相電流變化更為平滑,負(fù)載變化時(shí)輸出波動(dòng)更小。(4)提出魯棒定頻模型預(yù)測(cè)控制(RCF-MPC)方法實(shí)現(xiàn)前級(jí)CACZVS三相PFC變換器的電流環(huán)定頻模型預(yù)測(cè)控制,電壓環(huán)采用魯棒變結(jié)構(gòu)控制器,在同時(shí)存在參數(shù)不確定(變化)和輸入三相電壓不平衡的情況下,提升了前級(jí)變換器的性能。單晶爐的實(shí)際工況通常是輸入三相電壓不平衡與參數(shù)不確定(變化)并存,傳統(tǒng)處理三相不平衡的方法需要分別考慮三相正序電流和負(fù)序電流的控制,控制閉環(huán)增多,控制結(jié)構(gòu)復(fù)雜,本文采用預(yù)測(cè)控制解決這個(gè)問題。應(yīng)用于傳統(tǒng)硬開關(guān)模式的三相功率因數(shù)校正變換器(三相VSR變換器)的有限狀態(tài)模型預(yù)測(cè)控制策略(FS-MPC)由于存在不定頻的問題,無法被直接應(yīng)用于一個(gè)開關(guān)周期內(nèi)需要開關(guān)狀態(tài)至少變化一次的軟開關(guān)變換器。針對(duì)上述問題,本文提出魯棒定頻模型預(yù)測(cè)控制(RCF-MPC)方法,該方法采用時(shí)間序列最優(yōu)定頻預(yù)測(cè)控制框架,在價(jià)值函數(shù)中增加負(fù)序電流指標(biāo)的同時(shí)增加處理預(yù)測(cè)模型不確定性的魯棒項(xiàng),電壓環(huán)仍然采用魯棒變結(jié)構(gòu)控制器,在同時(shí)存在三相電網(wǎng)不平衡和變換器參數(shù)不確定(變化)這樣更接近于實(shí)際的工況下時(shí),改善了變換器的性能。(5)提出采用論域減縮的模糊控制方法實(shí)現(xiàn)后級(jí)FB-ZVZCS變換器控制,在未知后級(jí)變換器模型的情況下,得到了比傳統(tǒng)PI控制方法更好的控制性能。后級(jí)FB-ZVZCS變換器傳統(tǒng)的控制方法基于小信號(hào)線性化模型和線性系統(tǒng)理論設(shè)計(jì)控制器,然而小信號(hào)模型的準(zhǔn)確性依賴于工作點(diǎn),當(dāng)負(fù)載等參數(shù)隨工作狀態(tài)變化時(shí),傳統(tǒng)方法控制性能變差。本文設(shè)計(jì)了變論域模糊控制方法提高變換器性能,該方法不依賴于對(duì)象精確模型,同時(shí)論域收縮因子的使用,解決了模糊控制效果受限于模糊變量和模糊規(guī)則數(shù)量,響應(yīng)速度和控制精度無法兼顧的問題,在保證相應(yīng)快速性的前提下,提高了后級(jí)變換器的穩(wěn)態(tài)跟蹤精度。(6)設(shè)計(jì)了基于DSP TMS320F28335控制電路,制作了前級(jí)和后級(jí)變換器,完成了 1.2kW小功率測(cè)試樣機(jī),為實(shí)驗(yàn)驗(yàn)證控制方法提供了實(shí)驗(yàn)平臺(tái),同時(shí)為加熱電源的實(shí)用化奠定了基礎(chǔ)。在實(shí)驗(yàn)平臺(tái)上對(duì)兩級(jí)變換器進(jìn)行了調(diào)試,得到了期望的控制效果。
[Abstract]:Power electronic converter is an important conversion device for electric energy utilization. The three-phase power is a power electronic device that turns the three-phase power frequency alternating current into DC. The traditional three-phase power supply uses diode or thyristor rectifier, which will cause the harmonic pollution, the increase of reactive power and the negative effects of electromagnetic interference. The active power of PWM based on soft switching technology The factor correction converter has high power factor and high efficiency, which can solve the problems of the traditional three phase power supply. Therefore, it has a wide application foreground in the fields of high-power uninterruptible power supply, reactive power compensation, solar power generation and AC and DC transmission systems. With advanced topology, the power factor correction, soft switching technology and advanced control algorithm are organically combined, a set of high efficiency, high power factor and high performance three-phase power supply prototype is designed, and the control strategy of this object is studied deeply. The main research internal capacity is as follows (1) on the basis of the analysis of the existing topology and the selection of the former The three-phase power factor correction converter (CACZVS three-phase PFC converter) with the active clamped soft switching (CACZVS) is matched with the three-phase power topology of the post stage phase shift full bridge zero voltage zero current (FB-ZVZCS) DC/DC converter. In this paper, the requirements for high power factor and high efficiency for the heating power supply for single crystal furnace are compared and analyzed in this paper. On the basis of the topology, soft switching conditions and related modulation methods, a new type of complex active clamp soft switching three-phase power factor correction converter (CACZVS three-phase PFC converter) is selected to realize power factor correction and output DC bus voltage control. The post stage phase full bridge zero voltage zero current (FB-ZVZCS) DC/DC converter is used. The current output voltage and power control. This paper analyzes the working mechanism of the three-phase power supply and the equivalent circuit. On this basis, the corresponding mathematical model is established, which provides the conditions for the study of the following control methods. (2) the multi target chaotic particle swarm optimization algorithm is proposed to design and control the multi-objective chaotic particle swarm optimization algorithm. The former stage CACZVS three-phase PFC converter, based on the traditional feedforward decoupling proportional integral (PI) controller parameter optimization problem in the two phase rotating coordinate system, gives the parameter optimization method and steps of the system. The control system of the three-phase PFC converter involves the cross axis current, the direct axis current and the output voltage of three. A control closed loop, the 6 control parameters of 3 PI controllers need to be designed and the control parameters are coupled with each other. The optimization target needs to consider the speed and accuracy of the output DC voltage and the input unit power factor. This is a complex multi parameter (multidimensional) multi-objective optimization problem. In this paper, the problem is proposed (1). Based on Parry (Pareto) theory, the particle swarm optimization (PSO) algorithm is used to solve the automatic equilibrium problem of multiple targets. (2) a multi-dimensional initial particle swarm optimization method is produced in the spatio-temporal chaos model of the unidirectional coupled map lattice, which solves the problem of the traditional single dimensional chaotic particle swarm optimization, raises the search speed of the particle swarm optimization method and reduces the most local maximum. The probability of optimal solution. (3) three kinds of nonlinear control methods are designed to reduce the influence of the power parameter uncertainty (or change) on the system performance and improve the control performance of the three-phase power supply. The pre stage CACZVS three-phase PFC converter has the characteristics of nonlinear, strong coupling, parameter uncertainty and load and other parameters with the working condition. The lower control strategy is used to improve the performance of the converter control. The specific method includes: a) feedback linearization control method based on the load sliding mode observer. This method is used to estimate the load parameters online by using the sliding mode observer for the uncertain load. At the same time, the corresponding feedback linearization is designed for the non linear strong coupling characteristics of the three-phase PWM converter. The controller applies the estimated load value to the voltage loop feedback linearization controller to improve the adaptive capacity of the controller for the load time. B) designs an adaptive controller for the voltage loop load and the unknown output filter capacitor considering the uncertainty of the load and output filter capacitance. The current loop uses feedback linearization control. The control scheme has little parameters and is easy to select. It has better adaptability for load change and uncertainty of capacitance parameters. C) proposed a sliding mode variable structure control method considering input voltage fluctuation, input filter inductance, equivalent resistance of filter inductor, output filter capacitance and uncertainty of load parameters. Compared with the method, the robustness of the system is improved by increasing the robust term, while the system is robust when parameters are uncertain and parameters change. At the same time, the use of the boundary layer shrinkage method reduces the chatter of the control quantity, makes the input three-phase current more smooth, and the output fluctuates less when the load changes. (4) the robust constant frequency model predictive control (RCF-MPC) side is proposed. The method realizes the constant frequency model predictive control of the current loop of the pre stage CACZVS three-phase PFC converter, and the voltage loop adopts the robust variable structure controller. The performance of the pre stage converter is improved when the parameters are not determined (change) and the input three-phase voltage is unbalance. The actual working condition of the single crystal furnace is usually the input three-phase voltage imbalance and the reference. The number of uncertainties (changes) coexist, and the traditional methods of three-phase unbalance need to consider the control of the positive sequence current and negative sequence current respectively. The control closed loop is increased and the control structure is complex. This problem is solved by the predictive control in this paper. The three phase power factor correction converter (three phase VSR converter) used in the traditional hard switching mode is used in this paper. The limited state model predictive control strategy (FS-MPC) can not be directly applied to a soft switching converter which needs to change at least once in a switching period due to the existence of uncertain frequency. In this paper, a robust fixed frequency predictive control (RCF-MPC) method is proposed in this paper. This method uses the time series optimal constant frequency prediction. The control framework increases the negative sequence current index in the value function while increasing the robustness of the uncertainty of the prediction model. The voltage loop still adopts the robust variable structure controller, which improves the performance of the converter when there is a three phase grid imbalance and the converter parameter uncertainty (change) which is more close to the actual condition. 5) the fuzzy control method of domain reduction is proposed to control the post stage FB-ZVZCS converter. Under the condition of the unknown post stage converter model, the control performance is better than the traditional PI control method. The traditional control method of the post stage FB-ZVZCS converter is based on the small signal linearization model and the linear system theory design controller, however, the control method is based on the linear model and the linear system theory. The accuracy of the small signal model depends on the working point. When the parameters of the load change with the working state, the traditional method control performance is worse. In this paper, a variable domain fuzzy control method is designed to improve the performance of the converter. This method does not depend on the exact model of the object, and the use of the domain shrinkage factor, the effect of the fuzzy control is limited to the model. The number of fuzzy and fuzzy rules, the response speed and the control precision can not be taken into account. Under the premise of ensuring the corresponding speediness, the steady-state tracking precision of the post stage converter is improved. (6) the DSP TMS320F28335 control circuit is designed, the former and the post stage converters are made, and the 1.2kW small power test prototype is completed, and the experimental verification control is carried out. The method provides the experimental platform and lays the foundation for the utility of the heating power supply. The two stage converter is debugged on the experimental platform, and the desired control effect is obtained.

【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN86
,

本文編號(hào):1879098

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1879098.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶469be***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com