天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 信息類博士論文 >

全自動(dòng)納米材料合成儀的研制

發(fā)布時(shí)間:2018-05-10 18:06

  本文選題:稀土摻雜納米材料 + 小尺寸。 參考:《吉林大學(xué)》2016年博士論文


【摘要】:化學(xué)是一門古老卻始終朝氣蓬勃、發(fā)展迅速的基礎(chǔ)學(xué)科,它滲透于我們生活中的每個(gè)角落,推動(dòng)著人類社會(huì)的發(fā)展和進(jìn)步。盡管學(xué)科發(fā)展迅速,但時(shí)至今日對(duì)于許多化學(xué)實(shí)驗(yàn)的探索仍然嚴(yán)重依賴科研工作者的人工操作。特別是對(duì)于某些特殊納米材料的制備,即便合成條件復(fù)雜,反應(yīng)毒性較大,但整個(gè)合成過程仍然需要靠科研工作者以手工控制的方式來完成。然而對(duì)于此類實(shí)驗(yàn),過多的人工操作不僅會(huì)導(dǎo)致實(shí)驗(yàn)結(jié)果重復(fù)性不高,還可能給科研工作者帶來健康隱患。當(dāng)代信息技術(shù)及自動(dòng)控制技術(shù)的發(fā)展已經(jīng)深刻地改變了人們的生活方式,為人們的生活提供了極大的便利,我們相信如果將這些技術(shù)應(yīng)用于科學(xué)實(shí)驗(yàn)的探索,必然也會(huì)為科學(xué)研究帶來質(zhì)的飛躍;谧詣(dòng)控制技術(shù)在科學(xué)研究中顯現(xiàn)出的潛在應(yīng)用價(jià)值,經(jīng)過幾年的努力,我們成功研制了一款全自動(dòng)納米材料合成儀。該儀器能夠在無人值守的情況下,實(shí)現(xiàn)對(duì)納米材料合成實(shí)驗(yàn)中的反應(yīng)溫度、攪拌速度、氣流速度、投料速度等實(shí)驗(yàn)參數(shù)的自動(dòng)控制,并最終實(shí)現(xiàn)對(duì)納米材料的全自動(dòng)合成。與傳統(tǒng)的人工合成方法相比,全自動(dòng)納米材料合成儀能將科研工作者從繁瑣的實(shí)驗(yàn)操作中解放出來,也能顯著降低由手工操作引起的實(shí)驗(yàn)誤差,從而提高實(shí)驗(yàn)結(jié)果的重復(fù)性,并為科研工作者提供更為豐富的實(shí)驗(yàn)信息,為實(shí)驗(yàn)結(jié)果的分析和實(shí)驗(yàn)過程的優(yōu)化提供有力的技術(shù)支持。近年來,稀土摻雜上轉(zhuǎn)換納米材料因其在生物熒光成像、光動(dòng)力學(xué)治療、藥物傳輸及生物探測(cè)等領(lǐng)域展現(xiàn)出巨大的應(yīng)用前景而成為研究熱點(diǎn)。在全自動(dòng)納米材料合成儀的開發(fā)過程中我們也選擇了稀土上轉(zhuǎn)換納米材料作為一個(gè)重要的合成示例。我們通過攻克尺寸小于10 nm的Na YF4納米材料可重復(fù)、穩(wěn)定合成的難關(guān),展現(xiàn)出了全自動(dòng)納米材料合成儀在材料合成及科學(xué)研究探索方面的巨大優(yōu)勢(shì)。當(dāng)納米材料尺寸小于10 nm時(shí),在人體內(nèi)可通過腎臟代謝將其清除,所以小尺寸稀土上轉(zhuǎn)換納米材料在生物醫(yī)藥領(lǐng)域擁有其特殊的優(yōu)勢(shì)。但手工方式合成小尺寸上轉(zhuǎn)換納米材料的難度很高,并且實(shí)驗(yàn)的重復(fù)性較低。近年來,人們通過摻雜釓離子、引入油胺等方式探索合成尺寸小于10 nm的Na YF4納米材料,但這些方法均是基于手工操作,不僅需要較高的學(xué)習(xí)成本,不易掌握,更重要的是仍然難以解決人為誤差造成納米材料合成重復(fù)性不高的問題。然而采用全自動(dòng)納米材料合成儀進(jìn)行納米材料的合成時(shí),操作者僅需簡單培訓(xùn)就可以完成整個(gè)實(shí)驗(yàn),大大節(jié)約了學(xué)習(xí)成本、時(shí)間投入和體力投入,在合成材料質(zhì)量、合成重復(fù)性等方面,全自動(dòng)納米材料合成儀也展現(xiàn)出了手工操作無法比擬的優(yōu)勢(shì)。全自動(dòng)納米材料合成儀是國際上首臺(tái)能夠穩(wěn)定、可重復(fù)完成10nm Na YF4制備的全自動(dòng)合成設(shè)備,該儀器的問世也填補(bǔ)了國內(nèi)相關(guān)研究領(lǐng)域的空白。圍繞該儀器的研制,我們主要做了以下幾方面工作:1.研制了溫控系統(tǒng)、攪拌系統(tǒng)、投料系統(tǒng)及氣路系統(tǒng)等多個(gè)智能子系統(tǒng),并針對(duì)高溫?zé)岱纸夥ê铣上⊥翐诫s納米材料所需要的特殊條件,從選型、硬件設(shè)計(jì)、軟件設(shè)計(jì)等多方面對(duì)各個(gè)子系統(tǒng)進(jìn)行優(yōu)化,最終實(shí)現(xiàn)整套儀器對(duì)納米材料合成條件的高精度控制。該合成儀中各個(gè)子系統(tǒng)既是可以單獨(dú)工作的獨(dú)立儀器,又能夠通過數(shù)據(jù)總線共同協(xié)調(diào)工作。2.編寫了納米材料合成儀的主控程序,并為儀器設(shè)計(jì)了友好的人機(jī)界面。在主控程序的協(xié)調(diào)控制下,全自動(dòng)納米材料合成儀可以綜合控制溫度、氣流速度、投料速度、攪拌速度等實(shí)驗(yàn)參數(shù),自動(dòng)按照實(shí)驗(yàn)計(jì)劃完成實(shí)驗(yàn)。值得一提的是,儀器中內(nèi)置了經(jīng)過優(yōu)化的稀土上轉(zhuǎn)換納米材料合成模板程序,操作者僅需在屏幕上點(diǎn)擊3次即可控制儀器自動(dòng)合成稀土上轉(zhuǎn)換納米材料。3.設(shè)計(jì)并制作了生產(chǎn)難度小、安裝簡易、維修方便、堅(jiān)固耐用的納米材料合成儀機(jī)械結(jié)構(gòu),合理地將高溫?zé)岱纸夥▽?shí)驗(yàn)所需的化學(xué)、電路、機(jī)械等各個(gè)控制系統(tǒng)集成于一個(gè)小型的儀器中,同時(shí)通過較為巧妙的設(shè)計(jì)解決了子系統(tǒng)在工作過程中相互干擾的問題。4.設(shè)置了多重安全措施以確保儀器的安全性。此儀器可以在進(jìn)行實(shí)驗(yàn)的過程中自動(dòng)發(fā)現(xiàn)溫度控制、氣路控制、攪拌控制等系統(tǒng)的意外故障,并采取合理措施保證安全,使該儀器具備了無需人工值守便可自動(dòng)安全完成工作的能力。在全自動(dòng)納米材料合成儀研制成功之后,我們將其用于科學(xué)研究,并且取得了如下研究成果:1.率先使用全自動(dòng)納米材料合成儀自動(dòng)合成10 nm以下Na YF4。并且通過20次重復(fù)實(shí)驗(yàn),合成了尺寸均約為8.5 nm的β-Na YF4,通過尺寸統(tǒng)計(jì)發(fā)現(xiàn),20次樣品尺寸相對(duì)標(biāo)準(zhǔn)偏差為2.013%,實(shí)現(xiàn)了納米材料的高可重復(fù)性合成。2.通過更改高溫反應(yīng)時(shí)間,觀察到了納米材料由α→β的相變過程,實(shí)現(xiàn)了10nm以下納米材料尺寸的精確程控調(diào)控,完成了3.1 nm、3.8 nm、4.9 nm、7.0nm和8.5 nm等尺寸納米材料的程控自動(dòng)制備,并研究了小尺寸納米材料發(fā)光效率與尺寸的依賴關(guān)系。3.率先利用全自動(dòng)納米材料合成儀制備樣品重復(fù)性高的優(yōu)勢(shì),完成了8.5 nm尺寸下Na YF4中Yb3+,Er3+最佳摻雜比例的摸索,發(fā)現(xiàn)在尺寸為8.5 nm的Na YF4納米材料中,4%的Er3+和13%的Yb3+為最佳摻雜濃度。
[Abstract]:Chemistry is an ancient, vigorous, and rapidly developing basic discipline. It permeates every corner of our life and promotes the development and progress of human society. Although the discipline is developing rapidly, the exploration of many chemical experiments is still heavily dependent on the manual operation of scientific researchers. The preparation of special nanomaterials, even if the synthesis conditions are complex and the reaction toxicity is large, but the whole process of synthesis still needs to be done by manual control by researchers. However, too much manual operation will not only lead to the low reproducibility of the experimental results, but also may bring health risks to the researchers. The development of information technology and automatic control technology has profoundly changed people's life style and provided great convenience for people's life. We believe that if we apply these technologies to the exploration of scientific experiments, we will inevitably bring a qualitative leap for scientific research. In the application value, after several years of effort, we have successfully developed a fully automatic nanomaterial synthesizer. This instrument can automatically control the reaction temperature, stirring speed, airflow speed, feeding speed and so on in the case of unattended, and finally realizes the full self of nanomaterial. Dynamic synthesis. Compared with the traditional synthetic method, the fully automatic nanomaterial synthesizer can liberate the researchers from the tedious experimental operation, and can significantly reduce the experimental error caused by manual operation, thus improve the repeatability of the experimental results, and provide more abundant experimental information for the authors of the scientific research workers. The analysis of fruit and the optimization of experimental process provide strong technical support. In recent years, rare earth doped up-conversion nanomaterials have become a hot spot because of their huge application prospects in the fields of bioluminescence imaging, photodynamic therapy, drug transmission and biological detection. The rare-earth upconversion nanomaterials are also selected as an important example of synthesis. We can repeat and stabilize the synthesis of Na YF4 nanomaterials with a size less than 10 nm, showing the great advantage of the fully automatic nanomaterial synthesizer in material synthesis and scientific research. When the size of nanomaterials is less than 10 nm, In the human body, it can be removed through renal metabolism, so small size rare-earth switching nanomaterials have their special advantages in the field of biomedicine. But the difficulty of synthesizing small size upconversion nanomaterials by hand method is very difficult, and the repeatability of the experiment is low. In recent years, people have explored the way of doping gadolinium ions and introducing oil amines. Na YF4 nanomaterials with a size of less than 10 nm are synthesized, but these methods are based on manual operation, not only need higher learning cost, but also difficult to master. More importantly, it is still difficult to solve the problem of low repetition of nanomaterial synthesis caused by human error. However, the synthesis of nanomaterials using fully automatic nanomaterial synthesizer is used. The operator only needs simple training to complete the whole experiment, greatly saving the learning cost, time input and physical input, the quality of synthetic materials, synthesis repeatability and so on. The automatic nanomaterial synthesizer also shows the incomparable advantage of manual operation. The full automatic nano material synthesizer is the first stable in the world. The automatic synthetic equipment of 10nm Na YF4 can be completed repeatedly. The instrument has also filled the blank of the domestic research field. Around the development of this instrument, we have mainly done the following aspects: 1. we have developed a number of intelligent subsystems, such as temperature control system, mixing system, feeding system and gas circuit system, and the thermal decomposition of high temperature. The special conditions required by the rare earth doped nanomaterials are synthesized by the method. The subsystems are optimized from various aspects, such as selection, hardware design and software design. Finally, the high precision control of the synthetic conditions of nanomaterials is realized by the complete set of instruments. The subsystems in this synthetic instrument are both independent and independent instruments and can pass the data. .2. has written the main control program of nanomaterial synthesizer and designed a friendly man-machine interface for the instrument. Under the coordinated control of the main control program, the fully automatic nanomaterial synthesizer can control the temperature, airflow speed, feeding speed, stirring speed and other experimental parameters, and the experiment is completed automatically according to the experimental plan. It is to mention that the instrument is built with an optimized template program for the synthesis of rare earth upconversion nanomaterials. The operator can only click 3 times on the screen to control the automatic synthesis of rare-earth up conversion nanomaterial.3., which is difficult to produce, easy to install, convenient for maintenance, and a solid and durable mechanical junction of nanomaterial synthesizer. It is reasonable to integrate the control systems of chemical, circuit, machinery, etc. to a small instrument, which is necessary for the high temperature thermal decomposition experiment. At the same time, the problem of interference in the working process of the subsystem is solved by the more ingenious design..4. sets multiple safety measures to ensure the safety of the instrument. In the process of testing, we automatically discover the accidental faults of the system, such as temperature control, gas control, stirring control and so on, and take reasonable measures to ensure the safety, so that the instrument has the ability to complete the work automatically without manual duty. After studying the work of the fully automatic nanomaterial synthesizer, we use it for scientific research and obtain it. The following research results are as follows: 1. the first automatic nanomaterial synthesizer is used to automatically synthesize Na YF4. below 10 nm and the beta -Na YF4 with a size of about 8.5 nm is synthesized through 20 repeated experiments. By size statistics, the relative standard deviation of the 20 sample size is 2.013%, and the high reproducibility of the nanometer material is realized through the change of.2.. The phase transition process of nanomaterial from alpha to beta was observed at high temperature, and the size of nanomaterials below 10nm was controlled by precise program control. The program controlled automatic preparation of 3.1 nm, 3.8 nm, 4.9 nm, 7.0nm and 8.5 nm nanomaterials was completed, and the dependence of the luminescence efficiency and size of small size nanomaterials on the first use of.3. was studied. The full automatic nanomaterial synthesizer has the advantage of high reproducibility, and the optimum doping ratio of Yb3+ and Er3+ in 8.5 nm size Na YF4 is completed. It is found that 4% Er3+ and 13% Yb3+ are the best doping concentration in the Na YF4 nanomaterials with a size of 8.5 nm.

【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP273;TB383.1

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 孫柏林;;探討自動(dòng)化行業(yè)未來發(fā)展之趨勢(shì)——自動(dòng)化行業(yè)應(yīng)在實(shí)現(xiàn)中國版“工業(yè)4.0”的征程中建功立業(yè)[J];自動(dòng)化博覽;2015年04期

2 只升昊;;探究我國電氣自動(dòng)化行業(yè)的現(xiàn)狀與發(fā)展[J];科學(xué)中國人;2014年14期

3 呂鵬飛;裴東興;沈大偉;;基于K型熱電偶的瞬態(tài)測(cè)溫技術(shù)的研究[J];傳感技術(shù)學(xué)報(bào);2014年06期

4 劉建偉;劉媛;羅雄麟;;深度學(xué)習(xí)研究進(jìn)展[J];計(jì)算機(jī)應(yīng)用研究;2014年07期

5 姚凱凱;;我國機(jī)械設(shè)計(jì)制造及其自動(dòng)化行業(yè)發(fā)展的概況[J];黑龍江科技信息;2013年25期

6 余凱;賈磊;陳雨強(qiáng);徐偉;;深度學(xué)習(xí)的昨天、今天和明天[J];計(jì)算機(jī)研究與發(fā)展;2013年09期

7 丁力;宋志平;徐萌萌;陶燦輝;;基于STM32的嵌入式測(cè)控系統(tǒng)設(shè)計(jì)[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年S1期

8 趙志宏;;制藥過程自動(dòng)化技術(shù)的發(fā)展[J];機(jī)電信息;2012年32期

9 陳致遠(yuǎn);朱葉承;周卓泉;祝磊;;一種基于STM32的智能家居控制系統(tǒng)[J];電子技術(shù)應(yīng)用;2012年09期

10 宋維業(yè);石峰;趙丹;秦偉平;;具有強(qiáng)紫外上轉(zhuǎn)換發(fā)射特性的小尺寸、水溶性NaYF_4∶Yb,Tm納米晶的合成與表征[J];發(fā)光學(xué)報(bào);2012年07期

相關(guān)博士學(xué)位論文 前3條

1 董新平;物聯(lián)網(wǎng)產(chǎn)業(yè)成長研究[D];華中師范大學(xué);2012年

2 岳東峰;數(shù)控系統(tǒng)功能安全關(guān)鍵技術(shù)的研究[D];中國科學(xué)技術(shù)大學(xué);2012年

3 仝猛;科氏質(zhì)量流量計(jì)理論與應(yīng)用研究[D];西北工業(yè)大學(xué);2003年

相關(guān)碩士學(xué)位論文 前10條

1 童楨;直流無刷電機(jī)控制器設(shè)計(jì)[D];南昌大學(xué);2013年

2 陳振興;基于STM32的微型四軸飛行器研究與設(shè)計(jì)[D];河北工業(yè)大學(xué);2014年

3 管于球;直流無刷電機(jī)控制系統(tǒng)的研究與設(shè)計(jì)[D];中南大學(xué);2013年

4 熊文軍;科氏質(zhì)量流量計(jì)實(shí)驗(yàn)和應(yīng)用中關(guān)鍵技術(shù)研究[D];合肥工業(yè)大學(xué);2013年

5 龍?jiān)品?工業(yè)用熱式氣體質(zhì)量流量計(jì)的研制[D];華中科技大學(xué);2012年

6 陳小永;直流無刷電機(jī)控制技術(shù)研發(fā)[D];中國石油大學(xué);2008年

7 魯曉玲;安全儀表系統(tǒng)的功能安全評(píng)估研究[D];首都經(jīng)濟(jì)貿(mào)易大學(xué);2008年

8 王曉沖;模糊參數(shù)自整定PID溫控系統(tǒng)的設(shè)計(jì)與研究[D];中南大學(xué);2007年

9 李雯;熱式質(zhì)量流量計(jì)的設(shè)計(jì)[D];浙江大學(xué);2007年

10 李躍峰;功能安全國際標(biāo)準(zhǔn)的研究[D];浙江大學(xué);2007年

,

本文編號(hào):1870331

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1870331.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶94edf***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com