時(shí)間展寬分幅變像管時(shí)空性能研究
本文選題:慣性約束聚變 + 超快診斷技術(shù) ; 參考:《深圳大學(xué)》2017年博士論文
【摘要】:分幅相機(jī)利用變像管實(shí)現(xiàn)圖像的光電轉(zhuǎn)換、脈沖選通和圖像增強(qiáng),是研究超快現(xiàn)象的主要工具。在慣性約束聚變(Inertial Confinement Fusion,ICF)的最后階段,聚變?nèi)紵掷m(xù)時(shí)間為~l00 ps,此時(shí)靶核被壓縮至幾十微米,對(duì)該階段等離子體時(shí)空演化的測(cè)量要求X射線分幅相機(jī)具有微米量級(jí)的二維空間分辨能力和優(yōu)于30 ps的時(shí)間分辨能力。因此,為滿足高時(shí)空分辨的ICF診斷實(shí)驗(yàn)要求,本論文對(duì)時(shí)間展寬分幅變像管的時(shí)空分辨性能展開(kāi)研究,期望探尋一條提升X射線分幅變像管時(shí)間分辨性能的有效途徑,為我國(guó)ICF的研究提供一種具有良好時(shí)空分辨性能的超快診斷設(shè)備。在總結(jié)國(guó)內(nèi)外分幅攝影技術(shù)發(fā)展的基礎(chǔ)上,本論文對(duì)時(shí)間展寬分幅變像管的時(shí)空分辨性能展開(kāi)了理論研究和實(shí)驗(yàn)測(cè)試,完成的主要工作包括以下幾個(gè)部分:1、采用短磁聚焦成像系統(tǒng)設(shè)計(jì)了時(shí)間展寬分幅變像管,通過(guò)對(duì)變像管系統(tǒng)整體結(jié)構(gòu)的描述,分析了電子束產(chǎn)生與傳輸系統(tǒng),磁透鏡成像系統(tǒng)和MCP選通分幅變像管系統(tǒng)的工作原理,為建立變像管模型提供了理論依據(jù);2、在時(shí)間分辨性能理論研究方面,模擬了像管時(shí)間分辨率,當(dāng)漂移距離為500 mm、陰極電壓為-2 kV和展寬脈沖斜率為10 V/ps時(shí),電子束時(shí)間展寬技術(shù)可將分幅變像管時(shí)間分辨率提升至~2.24 ps,并研究和分析了漂移距離、陰極電壓和展寬脈沖斜率等參數(shù)對(duì)時(shí)間分辨性能的影響。研究結(jié)果表明,漂移距離的增加能提高電子束展寬倍率,使像管時(shí)間分辨性能獲得提升,但當(dāng)電子束的展寬倍率提高到一定程度時(shí),像管時(shí)間分辨性能的提升變得相對(duì)緩慢;陰極電壓的提高,使電子束時(shí)間展寬倍率變小,引起像管時(shí)間分辨性能變差;而提高展寬脈沖斜率,能提高電子束展寬倍率,使像管時(shí)間分辨性能獲得提升。綜合以上結(jié)論,在選擇適當(dāng)漂移距離的同時(shí),降低陰極電壓和提高展寬脈沖斜率能快速提升像管時(shí)間分辨性能。3、在空間分辨性能理論研究方面,模擬了單/雙磁透鏡時(shí)間展寬分幅變像管的空間分辨率和成像面。當(dāng)電子圖像的成像比例為1:1時(shí),單磁透鏡像管軸上空間分辨率為61μm,離軸10 mm處的空間分辨率優(yōu)于200μm;雙磁透鏡像管軸上空間分辨率為45μm,離軸20 mm處的空間分辨率優(yōu)于200μm。采用球差和場(chǎng)曲理論分析了兩種像管空間分辨性能存在差異的原因,對(duì)提高陰極電壓和減小陰柵間距能提升像管空間分辨性能的原因展開(kāi)了分析。模擬與分析結(jié)果表明,短磁聚焦時(shí)間展寬分幅變像管的成像面為一拋物面,其空間分辨性能隨離軸距離增加而變差,而雙磁透鏡能減小球差和場(chǎng)曲的影響,使像管離軸空間分辨性能優(yōu)于單磁透鏡像管。4、采用2號(hào)分辨率板和刻有分辨率板的大面積陰極,測(cè)試了短磁聚焦時(shí)間展寬分幅變像管的靜態(tài)性能。當(dāng)電子圖像的成像比例為1:1時(shí),測(cè)得單/雙磁透鏡像管的軸上空間分辨率分別為79.5μm和75μm;當(dāng)電子圖像的成像比例為2:1時(shí),單磁透鏡像管陰極離軸~10.5 mm處的空間分辨率為200μm,雙磁透鏡像管陰極離軸~22.5 mm和~30 mm處的空間分辨率分別為200μm和500μm。測(cè)試了場(chǎng)曲和陰柵間距對(duì)像管空間分辨性能的影響。測(cè)試結(jié)果顯示:短磁聚焦時(shí)間展寬分幅變像管的軸上空間分辨率優(yōu)于100μm,采用雙磁透鏡成像的像管具有更好的離軸空間分辨性能,測(cè)試結(jié)果和分析結(jié)論與理論模擬相一致。5、采用延時(shí)光纖束測(cè)試了短磁聚焦時(shí)間展寬分幅變像管的動(dòng)態(tài)性能,通過(guò)一幅動(dòng)態(tài)圖像獲得了像管的時(shí)間分辨率和動(dòng)態(tài)空間分辨率。當(dāng)電子束時(shí)間寬度未被展寬時(shí),像管時(shí)間分辨率為~105 ps,而采用電子束時(shí)間展寬技術(shù)后,時(shí)間分辨率提升至~11 ps。在電子圖像的成像比例為1:1時(shí),單/雙磁透鏡像管的近軸動(dòng)態(tài)空間分辨率均優(yōu)于100μm,調(diào)制度分別為11%和16%。。本論文工作的主要?jiǎng)?chuàng)新點(diǎn)如下:1、提出將短磁聚焦技術(shù)、電子束時(shí)間展寬技術(shù)和MCP行波選通分幅技術(shù)相結(jié)合來(lái)研制新型的時(shí)間展寬X射線分幅變像管,使得分幅變像管能夠獲得更好的時(shí)間分辨性能。2、采用延時(shí)光纖束法對(duì)變像管動(dòng)態(tài)性能進(jìn)行測(cè)量。美國(guó)研究者采用Mach Zehnder干涉儀,通過(guò)六幅動(dòng)態(tài)圖像獲得相機(jī)時(shí)間分辨率,但由于實(shí)驗(yàn)中激光脈沖和電脈沖的觸發(fā)晃動(dòng)會(huì)引起這種方法出現(xiàn)測(cè)量誤差,所以,本文采用延時(shí)光纖束法,通過(guò)一次測(cè)量(即一幅動(dòng)態(tài)圖像)就能獲得分幅變像管的時(shí)間分辨率和動(dòng)態(tài)空間分辨率,以此避免了觸發(fā)晃動(dòng)帶來(lái)的測(cè)量誤差。
[Abstract]:In the last phase of Inertial Confinement Fusion (ICF), the duration of fusion combustion is ~l00 PS, at the last stage of the inertial confinement fusion (ICF), the target core is compressed to dozens of microns at this time, and the spatio-temporal evolution of the plasma at this stage is presented. The measurement of the X ray division camera requires the two dimensional spatial resolution of the micron scale and the time resolution superior to 30 PS. Therefore, in order to meet the requirements of the ICF diagnosis experiment with high temporal and spatial resolution, this paper studies the space-time resolution performance of the time broadened image tube with time broadening, and hopes to explore a time division of the X ray image tube. The effective way of identifying performance provides a super fast diagnostic equipment with good space-time resolution performance for the research of ICF in China. On the basis of summarizing the development of the technology of amplitude division photography at home and abroad, this paper has carried out a theoretical study and experimental test on the space-time resolution performance of the time widening image tube. The main tasks completed include the following 1, 1, using the short magnetic focusing imaging system to design the time widening image tube. Through the description of the overall structure of the image tube system, the working principle of the electron beam generation and transmission system, the magnetic lens imaging system and the MCP selective amplitude variant image tube system are analyzed, which provide the theoretical basis for the building of the image tube model; 2, in the time resolution. In the field of performance theory, the time resolution of the image tube is simulated. When the drift distance is 500 mm, the cathode voltage is -2 kV and the width of the broadening pulse is 10 V/ps, the time resolution of the electron beam can be raised to ~2.24 PS, and the parameters of the drift distance, the cathode voltage and the width of the broadening pulse are studied and analyzed. The results show that the increase of the drift distance can increase the broadening ratio of the electron beam and improve the time resolution of the tube, but when the broadening ratio of the electron beam is increased to a certain extent, the enhancement of the time resolution of the image tube becomes relatively slow; the increase of the cathode voltage makes the time of the electron beam widen the multiplex. As a result, the time resolution of the image tube is worse, and the increase of the width of the broadening pulse can increase the broadening rate of the electron beam and improve the time resolution of the image tube. The conclusion is that the time resolution performance of the image tube can be rapidly improved by reducing the voltage of the cathode and increasing the width of the broadening pulse while the appropriate drift distance is selected, and the spatial resolution of.3 can be resolved in space. In the field of performance theory, the spatial resolution and imaging surface of a single / double magnetic lens have been simulated. When the imaging ratio of the electronic image is 1:1, the spatial resolution of the mono lens image tube axis is 61 u m, the spatial resolution of the 10 mm off axis is better than 200 u m, the spatial resolution of the dual magnetic lens image tube is 45 mu m, and the off-axis 20 m The spatial resolution of the M is superior to 200 m.. The difference between the spatial resolution of the two kinds of image tubes is analyzed by the theory of spherical aberration and field curvature. The analysis of the reasons for increasing the cathode voltage and reducing the gap between the negative grid can improve the spatial resolution of the image tube. The simulation and analysis results show that the short magnetic focusing time broadened the image image of the image tube A parabolic surface is a paraboloid, and its spatial resolution becomes worse with the increase of the distance from the off axis. The dual magnetic lens can reduce the effect of the spherical aberration and the field curve. The space resolution of the image tube is better than that of the mono magnetically permeable mirror.4. The 2 resolution plate and the large area cathode with the resolution plate are used to test the static state of the short magnetic focusing time broadening image tube. Performance. When the imaging ratio of the electronic image is 1:1, the spatial resolution on the axis of the single / double magnetic mirror tube is 79.5 and 75 m respectively. When the imaging proportion of the electronic image is 2:1, the spatial resolution of the ~10.5 mm of the mono lens image tube cathode is 200 u m, the spatial resolution of ~22.5 mm and ~30 mm at the cathode off axis of the dual magnetic lens tube. The effects of the field curvature and the spacing of the screen on the spatial resolution of the image tube are measured at 200 m and 500 micron M. respectively. The test results show that the spatial resolution on the axis of the image tube is better than 100 u m, and the image tube with double magnetic lens imaging has a better off axis spatial resolution, the test results and the analysis conclusion and theory are obtained. The simulation phase is consistent with.5. The time resolution and dynamic spatial resolution of the image tube are obtained through a dynamic image. When the time width of the electron beam is not broadened, the time resolution of the image tube is ~105 PS, and the electron beam time broadening technique is used. When the time resolution is raised to ~11 PS. in the imaging ratio of electronic images to 1:1, the dynamic spatial resolution of the single / double magnetically permeable mirrors is better than 100 mu m. The main innovation points of this thesis are as follows: 1, the short magnetic focusing technology, the electron beam time broadening and the MCP traveling wave separation amplitude technique are proposed. Combining to develop a new time broadening X ray widening image tube, a better time resolution performance.2 can be obtained by the score image tube, and the time-delay fiber beam method is used to measure the dynamic performance of the image tube. The American researchers use the Mach Zehnder interferometer to obtain the time resolution of the camera by six dynamic images, but the experiment is excited by the experimental excitation. The trigger sloshing of light pulse and electric pulse will cause the measurement error of this method. Therefore, this paper uses a time-delay fiber beam method to obtain the time resolution and dynamic spatial resolution of the amplitude variant image tube by one time measurement (a dynamic image), so as to avoid the measurement error caused by the contact sloshing.
【學(xué)位授予單位】:深圳大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TN143
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 白雁力;龍井華;蔡厚智;雷云飛;張又文;李仕潭;劉進(jìn)元;;短磁聚焦分幅變像管空間分辨率的模擬與測(cè)試[J];深圳大學(xué)學(xué)報(bào)(理工版);2015年02期
2 劉蓉;田進(jìn)壽;王強(qiáng)強(qiáng);王超;溫文龍;盧裕;劉虎林;曹希斌;王俊鋒;趙衛(wèi);;磁透鏡內(nèi)徑比對(duì)條紋變像管性能的影響[J];真空科學(xué)與技術(shù)學(xué)報(bào);2014年10期
3 王強(qiáng)強(qiáng);田進(jìn)壽;丁永坤;溫文龍;劉蓉;盧裕;徐向晏;曹希斌;王興;王俊鋒;;行波前置短磁聚焦飛秒條紋管設(shè)計(jì)[J];強(qiáng)激光與粒子束;2014年03期
4 王傳珂;江少恩;丁永坤;;我國(guó)激光慣性約束聚變實(shí)驗(yàn)與診斷技術(shù)早期研究歷史[J];物理;2014年02期
5 蔡厚智;龍井華;劉進(jìn)元;彭翔;賈凌;張?jiān)?黃龍;楊國(guó)洪;劉慎業(yè);丁永坤;;大面積MCP選通X射線分幅相機(jī)的研制[J];深圳大學(xué)學(xué)報(bào)(理工版);2013年01期
6 蔡厚智;劉進(jìn)元;彭翔;牛麗紅;彭文達(dá);顧禮;;X射線皮秒分幅相機(jī)的研制[J];深圳大學(xué)學(xué)報(bào)(理工版);2012年02期
7 蔡厚智;劉進(jìn)元;彭翔;李文飛;葉艷平;吳劍鋒;張?zhí)胰A;鄧祁軍;牛麗紅;牛憨笨;劉慎業(yè);楊國(guó)洪;;寬微帶X射線分幅相機(jī)的研制[J];中國(guó)激光;2012年01期
8 曹柱榮;張海鷹;董建軍;袁錚;繆文勇;劉慎業(yè);江少恩;丁永坤;;高動(dòng)態(tài)范圍激光等離子體診斷系統(tǒng)及其在慣性約束聚變實(shí)驗(yàn)中的應(yīng)用[J];物理學(xué)報(bào);2011年04期
9 李玉同;;快點(diǎn)火激光核聚變和實(shí)驗(yàn)室天體物理中的幾個(gè)前沿問(wèn)題[J];激光與光電子學(xué)進(jìn)展;2010年09期
10 蔡厚智;劉進(jìn)元;;超快脈沖電路的研制及應(yīng)用[J];深圳大學(xué)學(xué)報(bào)(理工版);2010年01期
相關(guān)會(huì)議論文 前2條
1 張?zhí)m芝;江文勉;;慣性約束聚變(ICF)中子診斷學(xué)進(jìn)展[A];第8屆全國(guó)核電子學(xué)與核探測(cè)技術(shù)學(xué)術(shù)年會(huì)論文集(二)[C];1996年
2 白永林;劉百玉;歐陽(yáng)嫻;劉進(jìn)元;;高時(shí)空分辨診斷與超快電子學(xué)技術(shù)[A];2004年全國(guó)強(qiáng)場(chǎng)激光物理會(huì)議論文集(二)[C];2004年
,本文編號(hào):1826749
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1826749.html