影響激波管動態(tài)壓力校準精度的關(guān)鍵問題研究
發(fā)布時間:2018-04-30 15:48
本文選題:激波管 + 動態(tài)壓力校準精度 ; 參考:《中北大學》2016年博士論文
【摘要】:動態(tài)壓力校準技術(shù)是保證動態(tài)壓力測試精度的關(guān)鍵,激波管校準裝置在動態(tài)壓力校準技術(shù)中使用最為普遍,世界上許多國家都推薦使用激波管裝置進行動態(tài)壓力校準。因此,對提高激波管裝置校準精度的研究具有意義。本文針對影響激波管動態(tài)壓力校準精度的幾項關(guān)鍵問題展開研究,主要采用理論分析、試驗驗證以及數(shù)值仿真分析三種手段進行。主要工作和結(jié)論如下:介紹了激波管動態(tài)壓力校準技術(shù)及由此獲得壓力傳感器動態(tài)特性的方法。隨后介紹了計算動態(tài)壓力信號幅值的經(jīng)典Rankine-Hugoniot超壓公式的推導(dǎo)過程,對三種導(dǎo)致壓力幅值計算產(chǎn)生誤差的因素進行了分析,分別是介質(zhì)比熱比K值變化、激波傳播的沿程能量損失以及激波后介質(zhì)的氣體狀態(tài)方程非理想,并得出激波后氣體的不理想狀態(tài)導(dǎo)致的誤差最大。選取符合實際情況,包含空氣含濕量參數(shù)的維里方程計算實際氣體狀態(tài)的壓縮因子,將壓縮因子代入修正后的超壓計算公式,經(jīng)修正公式計算得到的激波超壓值更加接近激波管試驗的實測值。試驗結(jié)果說明計及實際氣體狀態(tài)的超壓計算方法是一種有效的嘗試。針對激波管的一些關(guān)鍵流場問題,利用有限元方法進行數(shù)值模擬研究。以常用的流體力學有限元軟件FLUENT作為平臺,對管截面形狀、破膜開口尺寸、激波沿程衰減和傳感器安裝不平整幾個問題進行仿真研究。管截面形狀問題仿真結(jié)果為激波管的設(shè)計制造提供了參考依據(jù),破膜開口尺寸與激波沿程衰減問題的仿真結(jié)果對于激波管試驗方案的設(shè)置有一定的參考意義,傳感器安裝不平整問題的仿真結(jié)果則對試驗數(shù)據(jù)的處理分析提供了幫助,有助于分析異常數(shù)據(jù)的情況及可能產(chǎn)生的原因。這些關(guān)鍵流場問題的仿真都具有實際意義。針對在激波管試驗或?qū)嶋H爆炸場沖擊波測試中產(chǎn)生的應(yīng)力波干擾,利用分離式霍普金森壓桿(SHPB)裝置對壓力傳感器的應(yīng)力波效應(yīng)進行了試驗研究。試驗中將壓力傳感器側(cè)向安裝于透射桿之上,用落錘方式加載,使產(chǎn)生的應(yīng)力波能側(cè)向輸入壓力傳感器。當落錘釋放角度增大后,輸入應(yīng)力幅值和壓力傳感器輸出信號同時增大,而二者比值傳遞率也增加,試驗中最大輸出值超過傳感器滿量程的10%,對傳感器危害很大。利用尼龍和有機玻璃兩種高聚物材料設(shè)計制造了應(yīng)力波隔離座,并進行了試驗,試驗結(jié)果表明尼龍材料的隔離座能夠有效隔離應(yīng)力波造成的干擾,使傳感器輸出信號幅值、應(yīng)力輸入信號幅值及傳遞率都顯著減小,這對于實際測試中應(yīng)力隔離方案有參考價值。利用高聚物材料的本構(gòu)模型進行了數(shù)學仿真計算,在對模型輸入應(yīng)力波信號后觀察輸出信號,輸出信號與實測信號相似,同時結(jié)果對選擇隔離材料提供了參考依據(jù)。
[Abstract]:Dynamic pressure calibration technology is the key to ensure the accuracy of dynamic pressure measurement. Shock tube calibration device is the most widely used in dynamic pressure calibration technology. Many countries in the world recommend the use of shock tube device for dynamic pressure calibration. Therefore, it is significant to improve the calibration accuracy of shock tube. In this paper, several key problems affecting the accuracy of dynamic pressure calibration of shock tube are studied, which are mainly carried out by theoretical analysis, experimental verification and numerical simulation analysis. The main work and conclusions are as follows: the dynamic pressure calibration technique of shock tube and the method to obtain the dynamic characteristics of pressure sensor are introduced. Then the derivation process of classical Rankine-Hugoniot overpressure formula for calculating the amplitude of dynamic pressure signal is introduced. Three factors that lead to the error in calculating the pressure amplitude are analyzed, which are the variation of specific heat ratio K value of the medium. The energy loss along the path of shock wave propagation and the non-ideal equation of state of gas in the medium after shock wave are not ideal, and the error caused by the unideal state of the gas after shock wave is the greatest. The compression factor of the actual gas state is calculated by using the virial equation, which is in accordance with the actual situation and including the parameters of the moisture content of the air, and the compression factor is substituted into the modified formula for calculating the overpressure. The overpressure of shock wave calculated by modified formula is closer to the measured value of shock tube test. The experimental results show that the calculation method of overpressure taking into account the actual gas state is an effective attempt. The finite element method (FEM) is used to simulate some key flow field problems in shock tube. The common finite element software FLUENT is used as a platform to simulate the problems of tube section shape, film breaking opening size, shock wave attenuation along the path and sensor installation unevenness. The simulation results of the cross section shape of the tube provide a reference for the design and manufacture of the shock tube. The simulation results of the size of the film breaking and the attenuation of the shock wave along the path have a certain reference significance for the setting of the test scheme of the shock tube. The simulation results of sensor installation unevenness are helpful to the processing and analysis of the experimental data, and to the analysis of the abnormal data and the possible causes. The simulation of these key flow field problems is of practical significance. In view of the stress wave interference produced in shock tube test or shock wave test of actual explosion field, the stress wave effect of pressure sensor was experimentally studied by using split Hopkinson pressure bar (SHPB) device. In the experiment, the pressure sensor is installed laterally on the transmission rod, and loaded with drop hammer, the generated stress wave can be input into the pressure sensor laterally. When the angle of drop weight release increases, both the input stress amplitude and the output signal of the pressure sensor increase simultaneously, and the ratio transfer rate of the two increases. The maximum output value in the test exceeds 10 percent of the full range of the sensor, which is very harmful to the sensor. The stress wave isolator is designed and manufactured by using nylon and plexiglass polymer materials. The test results show that the isolator of nylon material can effectively isolate the interference caused by stress wave and make the sensor output signal amplitude. The amplitude and the transfer rate of the stress input signal are reduced significantly, which is of reference value for the stress isolation scheme in the actual test. Using the constitutive model of polymer material, the mathematical simulation calculation is carried out. The output signal is observed after the stress wave signal is input to the model. The output signal is similar to the measured signal, and the result provides a reference for the selection of isolating material.
【學位授予單位】:中北大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TP212
【參考文獻】
相關(guān)期刊論文 前10條
1 潘德恒;路宏年;王曙光;;高壓傳感器的準δ沖激動態(tài)校準[J];兵工學報;1991年01期
2 浦發(fā);高速火炮用尾翼穿甲彈的滯點增溫問題[J];彈箭與制導(dǎo)學報;1994年02期
3 張力,俞錦,劉晶;用于高壓動態(tài)校準的快開閥裝置[J];航空計測技術(shù);1996年05期
4 韓惠霖,李玉麟,湯林,楊明春;高動壓標定激波管[J];計量學報;1983年01期
5 范毓?jié)?韓惠霖,李玉麟;高動壓激波管中的真實氣體效應(yīng)[J];計量學報;1990年01期
6 曹重華,范良藻;袖珍臺式標定激波管[J];儀器儀表學報;1983年02期
7 張力,李程;正弦壓力標準[J];儀器儀表學報;2001年S2期
8 葉湘濱,張文娜;壓力傳感器動態(tài)性能分析及改進[J];傳感器技術(shù);2002年02期
9 王玲玲;大渦模擬理論及其應(yīng)用綜述[J];河海大學學報(自然科學版);2004年03期
10 崔海濤,劉慶明;沖擊波壓力傳感器測試系統(tǒng)的動態(tài)標定[J];流體力學實驗與測量;2004年01期
,本文編號:1825164
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1825164.html
最近更新
教材專著