高性能感應(yīng)電機(jī)無速度傳感器矢量控制系統(tǒng)研究
本文選題:感應(yīng)電機(jī) 切入點(diǎn):矢量控制 出處:《湖南大學(xué)》2016年博士論文
【摘要】:感應(yīng)電機(jī)以其緊湊的結(jié)構(gòu)和技術(shù)優(yōu)勢占據(jù)了電力傳動(dòng)領(lǐng)域的主導(dǎo)地位,各種高性能的交流調(diào)速技術(shù)也得到了廣泛的研究和應(yīng)用;谵D(zhuǎn)子磁場定向控制的感應(yīng)電機(jī)矢量控制技術(shù)可實(shí)現(xiàn)與直流電機(jī)相媲美的動(dòng)態(tài)性能,隨后的感應(yīng)電機(jī)無速度傳感器控制更增加了系統(tǒng)的簡易性和魯棒性。但目前感應(yīng)電機(jī)無速度傳感器矢量控制系統(tǒng)中仍有一些關(guān)鍵技術(shù)亟待解決,需要解決的關(guān)鍵問題是電機(jī)轉(zhuǎn)速估計(jì)、轉(zhuǎn)子磁鏈觀測和電機(jī)參數(shù)辨識(shí)。擴(kuò)張狀態(tài)觀測器(Extended State Observer,ESO)通過構(gòu)造擴(kuò)張狀態(tài)以觀測感應(yīng)電機(jī)轉(zhuǎn)子磁鏈,再結(jié)合模型參考自適應(yīng)系統(tǒng)(Model Reference Adaptive System,MRAS)控制技術(shù),可以實(shí)現(xiàn)感應(yīng)電機(jī)的磁鏈與轉(zhuǎn)速的觀測。自抗擾控制器(Active Disturbances Rejection Controller,ADRC)具有補(bǔ)償系統(tǒng)擾動(dòng)和模型不確定性的優(yōu)點(diǎn),是一種新型非線性控制器,適用于感應(yīng)電機(jī)控制系統(tǒng)的調(diào)節(jié)器設(shè)計(jì)。本文以感應(yīng)電機(jī)無速度傳感器矢量控制技術(shù)為應(yīng)用背景,以轉(zhuǎn)子磁鏈、定子電阻、轉(zhuǎn)子電阻、電機(jī)轉(zhuǎn)速等重要參數(shù)的辨識(shí)方法和魯棒控制器的設(shè)計(jì)問題展開系統(tǒng)深入研究。ESO是一種有效的感應(yīng)電機(jī)狀態(tài)估計(jì)方法,基于ESO的轉(zhuǎn)子磁鏈觀測器對轉(zhuǎn)子電阻變化魯棒性強(qiáng),但其存在兩大不足:(1)對電機(jī)定子電阻變化的魯棒性差;(2)缺少磁鏈輸出偏差補(bǔ)償機(jī)制。本文針對ESO轉(zhuǎn)子磁鏈觀測器進(jìn)行二次狀態(tài)擴(kuò)張,并形成一種閉環(huán)補(bǔ)償結(jié)構(gòu),提出了一種基于變結(jié)構(gòu)的轉(zhuǎn)子磁鏈閉環(huán)ESO觀測器(Closed loop ESO,CESO),利用觀測磁鏈的微分信號(hào)與電流估計(jì)值構(gòu)成辨識(shí)定子電阻的誤差信號(hào),直接消除了定子電阻降壓產(chǎn)生的積分影響。仿真與實(shí)驗(yàn)研究表明,轉(zhuǎn)子磁鏈閉環(huán)ESO觀測器對磁鏈觀測模型的總擾動(dòng)和輸出均能補(bǔ)償,有效提高了磁鏈觀測器對定、轉(zhuǎn)子電阻變化的魯棒性,改善了轉(zhuǎn)子磁鏈觀測精度。在基于恒磁通控制的感應(yīng)電機(jī)間接矢量控制系統(tǒng)中,轉(zhuǎn)子時(shí)間常數(shù)的變化是造成磁場定向偏差的關(guān)鍵影響因素,而轉(zhuǎn)子電阻變化是引起時(shí)間常數(shù)變化的主要原因。利用無功功率與電機(jī)參數(shù)弱相關(guān)的特點(diǎn),提出了一種基于無功功率參考模型的轉(zhuǎn)子電阻辨識(shí)方法。仿真研究結(jié)果表明,這種新型轉(zhuǎn)子電阻辨識(shí)方法具有算法簡單、實(shí)時(shí)性好、魯棒性強(qiáng)等優(yōu)點(diǎn),能有效提高轉(zhuǎn)子磁鏈定向精度,改善了電機(jī)輸出轉(zhuǎn)矩的動(dòng)靜態(tài)控制性能。電機(jī)轉(zhuǎn)速觀測技術(shù)是感應(yīng)電機(jī)無速度傳感器矢量控制系統(tǒng)的關(guān)鍵技術(shù),傳統(tǒng)的轉(zhuǎn)速觀測方法未計(jì)及電機(jī)參數(shù)時(shí)變性而存在不足。本文基于MRAS理論和多參數(shù)并行辨識(shí)技術(shù),提出了一種雙參數(shù)交互式MRAS速度觀測器。通過參考模型與可調(diào)模型互換、構(gòu)造不同自適應(yīng)律,實(shí)現(xiàn)了速度觀測和定子電阻的聯(lián)合辨識(shí)。仿真和實(shí)驗(yàn)結(jié)果表明:這種交互式轉(zhuǎn)速觀測方法消除了定子電阻變化的不利影響,獲得了穩(wěn)定的、高精度的速度觀測,改善了感應(yīng)電機(jī)無速度傳感器矢量控制系統(tǒng)低速時(shí)的動(dòng)靜態(tài)調(diào)速性能。魯棒控制器設(shè)計(jì)是感應(yīng)電機(jī)無速度傳感器矢量控制系統(tǒng)的重要研究內(nèi)容之一,傳統(tǒng)的PI調(diào)節(jié)器對電機(jī)參數(shù)變化敏感,調(diào)速范圍內(nèi)PI參數(shù)自適應(yīng)性差。本文將ADRC技術(shù)應(yīng)用于感應(yīng)電機(jī)無速度傳感器矢量控制系統(tǒng),并運(yùn)用強(qiáng)化學(xué)習(xí)方法對ADRC的參數(shù)進(jìn)行優(yōu)化,提出了一種基于擴(kuò)展連續(xù)動(dòng)作強(qiáng)化學(xué)習(xí)算法(Extended Continuous Action Reinforcement Learning Automata,ECARLA)的ADRC參數(shù)優(yōu)化方法,提高了ADRC參數(shù)優(yōu)化效率,保證參數(shù)全局最優(yōu)。仿真與實(shí)驗(yàn)研究表明:采用ADRC進(jìn)行調(diào)節(jié)器設(shè)計(jì),控制系統(tǒng)對電機(jī)參數(shù)大范圍擾動(dòng)具有較好地補(bǔ)償能力,轉(zhuǎn)速適應(yīng)范圍寬,對轉(zhuǎn)矩?cái)_動(dòng)也有較好抑制能力,動(dòng)態(tài)響應(yīng)速度快。最后,利用交流傳動(dòng)實(shí)驗(yàn)臺(tái)對本文提出的感應(yīng)電機(jī)狀態(tài)觀測和參數(shù)辨識(shí)方法進(jìn)行了實(shí)驗(yàn)研究。利用ADRC進(jìn)行調(diào)節(jié)器設(shè)計(jì),對感應(yīng)電機(jī)的多參數(shù)實(shí)現(xiàn)了聯(lián)合辨識(shí),提高電機(jī)轉(zhuǎn)速的觀測精度。針對定、轉(zhuǎn)子電阻和轉(zhuǎn)子時(shí)間常數(shù)辨識(shí)方法的實(shí)驗(yàn)結(jié)果同樣具有滿意的精度,與實(shí)際值相當(dāng)接近,從而滿足感應(yīng)電機(jī)高性能無速度傳感器矢量控制的要求。
[Abstract]:Induction motor with compact structure and technological advantages to occupy a dominant position in the field of power transmission, a variety of high performance AC speed regulation technology has been widely studied and applied. The induction motor vector control of rotor flux oriented control technology can realize the dynamic performance of comparable based on DC motor, induction motor and speed sensorless control adds to the simplicity and robustness of the system. But the induction motor speed sensorless vector control system, there are still some technical problems to be solved, the key problem to be solved is to estimate the rotation speed of the motor, the rotor flux estimation and parameters identification. The extended state observer (Extended State, Observer, ESO) by constructing the extended state to observe the rotor flux of induction motor, combined with model reference adaptive system (Model Reference Adaptive System, MRAS) control technology, can In order to realize the observation of the flux and the speed of induction motor. The ADRC (Active Disturbances Rejection Controller, ADRC) has the advantages of compensating system disturbance and model uncertainty, is a new type of nonlinear controller, controller design for induction motor control system. In this paper, the induction motor speed sensorless vector control technology for application in the background, rotor flux, stator resistance, rotor resistance identification method, the design problem of important parameters of motor speed and robust controller system research of.ESO is an effective method to estimate the state of the ESO induction motor, rotor flux observer of the rotor resistance change based on robust, but it has two major shortcomings: (1) robustness to stator resistance variation; (2) the lack of output flux deviation compensation mechanism. In this paper ESO rotor flux observer for the two time The state of expansion, and form a closed loop compensation structure, proposes a closed-loop rotor flux observer based on variable structure ESO (Closed loop ESO, CESO), the estimated value of the error signal of the stator resistance identification using a differential signal and current flux observation, directly eliminated the influence of stator resistance voltage integral produced. Simulation and experiment research shows that the rotor flux observer of ESO closed-loop flux observer and output disturbance can be compensated effectively improves the robustness of flux observer, rotor resistance change, improved rotor flux observation precision. Based on the constant flux control of induction motor indirect vector control system, the rotor time constant is change the key influence factors of the magnetic field caused by directional deviation, and rotor resistance variation is mainly caused by the time constant change. The reactive power and the parameters of the motor are weakly related features Point, proposes a rotor resistance identification method of reactive power based on reference model. Simulation results show that this new type of rotor resistance identification method has simple algorithm, good real-time performance, strong robustness, can effectively improve the accuracy of rotor flux orientation, improve the output torque of the motor dynamic and static performance of the control of motor speed. Observation is a key technology in the speed sensorless vector control system of induction motor speed. The traditional observation method does not consider the variation of the motor parameters and shortcomings. In this paper, MRAS theory and multi parameter based on parallel identification technique, a dual parameter velocity observer is proposed. Through the interactive MRAS reference model and the adjustable model of exchange, construct different adaptive law can achieve the joint identification speed and stator resistance observation. Simulation and experimental results show that this method eliminates the stator interactive speed observation The adverse effects of resistance change, to obtain a stable, high precision speed observation, improve the induction motor system static and dynamic speed performance of the speed sensorless vector control. The robust controller design is induction motor speed sensorless vector control system is an important research content of the traditional PI regulator is sensitive to variation of motor parameters PI, adaptive parameter difference speed range. In this paper the application of ADRC technology in the induction motor speed sensorless vector control system, and the use of reinforcement learning method for ADRC parameter optimization, proposes a reinforcement learning algorithm based on extended continuous action (Extended Continuous Action Reinforcement Learning Automata, ECARLA) ADRC parameter optimizing method to improve the efficiency of the optimization of ADRC parameters, to ensure the global optimal parameters. Simulation and experiments show that using ADRC regulator design And the control system has better ability to compensate for a wide range of motor parameter disturbance, to adapt to a wide range of speed, torque disturbance has good inhibition ability, fast dynamic response. Finally, the induction motor state observation and parameters by using AC drive experimental platform of the proposed identification methods were studied. The regulator is designed by using ADRC, multi parameter of the induction motor to realize the joint identification, improve the accuracy of motor speed. For the constant, rotor resistance and rotor time constant identification methods also have satisfactory accuracy, and very close to the actual value, so as to meet the requirements of high performance induction motor without speed sensor vector control.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP273;TM346
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 羅慧;劉軍鋒;萬淑蕓;;感應(yīng)電機(jī)參數(shù)的離線辨識(shí)[J];電氣傳動(dòng);2006年08期
2 ;高速感應(yīng)電機(jī)玻璃鋼套環(huán)的研制和應(yīng)用[J];大電機(jī)技術(shù);1980年03期
3 楊國強(qiáng);;三相感應(yīng)電機(jī)的計(jì)算機(jī)數(shù)學(xué)模型[J];成都科技大學(xué)學(xué)報(bào);1986年01期
4 胡怡華;;感應(yīng)電機(jī)的發(fā)展與現(xiàn)狀國際會(huì)議于1986年7月8~11日在意大利召開[J];微特電機(jī);1986年03期
5 張興華,戴先中,陸達(dá)君,沈建強(qiáng);感應(yīng)電機(jī)的逆系統(tǒng)方法解耦控制[J];電氣傳動(dòng);2001年02期
6 吳峻,潘孟春,李圣怡,陳軼;感應(yīng)電機(jī)的參數(shù)辨識(shí)[J];微特電機(jī);2001年06期
7 劉大年;感應(yīng)電機(jī)用電流源變換器設(shè)計(jì)中的控制方法探索[J];江蘇電器;2002年06期
8 宗學(xué)軍,樊立萍,袁德成,丁仁宏;感應(yīng)電機(jī)動(dòng)態(tài)特性的雙線性子空間辨識(shí)研究[J];沈陽化工學(xué)院學(xué)報(bào);2002年01期
9 陳林,方康玲,侯立軍;五相感應(yīng)電機(jī)建模與仿真[J];三峽大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年04期
10 程小華;感應(yīng)電機(jī)內(nèi)部物理過程的框圖描述[J];微特電機(jī);2003年04期
相關(guān)會(huì)議論文 前10條
1 胡云安;;感應(yīng)電機(jī)的塊控自適應(yīng)反步控制[A];2009年中國智能自動(dòng)化會(huì)議論文集(第一分冊)[C];2009年
2 郝蘭英;趙德宗;張承進(jìn);;高性能感應(yīng)電機(jī)速度控制的近期發(fā)展[A];第16屆中國過程控制學(xué)術(shù)年會(huì)暨第4屆全國故障診斷與安全性學(xué)術(shù)會(huì)議論文集[C];2005年
3 王謙;周亞麗;張奇志;;感應(yīng)電機(jī)無速度傳感器矢量控制的研究[A];2009年中國智能自動(dòng)化會(huì)議論文集(第一分冊)[C];2009年
4 李陽;張?jiān)?;基于模糊邏輯的自尋優(yōu)感應(yīng)電機(jī)能量優(yōu)化控制[A];第七屆全國電技術(shù)節(jié)能學(xué)術(shù)會(huì)議論文集[C];2003年
5 沈艷霞;林瑾;紀(jì)志成;;神經(jīng)網(wǎng)絡(luò)磁鏈估計(jì)的感應(yīng)電機(jī)自適應(yīng)反步控制[A];全國自動(dòng)化新技術(shù)學(xué)術(shù)交流會(huì)會(huì)議論文集(一)[C];2005年
6 張慶新;王鳳翔;李文君;;一種感應(yīng)電機(jī)恒單位功率因數(shù)運(yùn)行策略[A];全面建設(shè)小康社會(huì):中國科技工作者的歷史責(zé)任——中國科協(xié)2003年學(xué)術(shù)年會(huì)論文集(上)[C];2003年
7 劉曉東;橐曉宇;陸敏華;;感應(yīng)電機(jī)橢圓旋轉(zhuǎn)磁場的描述[A];第十一屆全國電工數(shù)學(xué)學(xué)術(shù)年會(huì)論文集[C];2007年
8 趙德宗;郝蘭英;張承進(jìn);;基于狀態(tài)反饋線性化的感應(yīng)電機(jī)滑模速度控制[A];第16屆中國過程控制學(xué)術(shù)年會(huì)暨第4屆全國故障診斷與安全性學(xué)術(shù)會(huì)議論文集[C];2005年
9 陳禮根;;基于降階擴(kuò)展卡爾曼濾波的感應(yīng)電機(jī)轉(zhuǎn)速估計(jì)[A];第八屆全國電技術(shù)節(jié)能學(xué)術(shù)會(huì)議論文集[C];2006年
10 王仕韜;;雙饋感應(yīng)電機(jī)在風(fēng)力發(fā)電中功率控制的建模分析[A];2006中國控制與決策學(xué)術(shù)年會(huì)論文集[C];2006年
相關(guān)博士學(xué)位論文 前10條
1 李翠萍;微型電動(dòng)汽車用感應(yīng)電機(jī)的冷卻系統(tǒng)研究[D];哈爾濱工業(yè)大學(xué);2014年
2 薛征宇;船舶感應(yīng)電機(jī)軸承故障的檢測方法研究[D];大連海事大學(xué);2015年
3 張自力;感應(yīng)電機(jī)電源快速軟切換關(guān)鍵技術(shù)的基礎(chǔ)研究[D];華北電力大學(xué);2015年
4 張金良;基于卡爾曼濾波算法的感應(yīng)電機(jī)無傳感器直接轉(zhuǎn)矩控制技術(shù)研究[D];華南理工大學(xué);2016年
5 黃濤;變頻供電感應(yīng)電機(jī)電磁振動(dòng)研究[D];武漢大學(xué);2014年
6 韋文祥;高性能感應(yīng)電機(jī)無速度傳感器矢量控制系統(tǒng)研究[D];湖南大學(xué);2016年
7 李偉;感應(yīng)電機(jī)的非線性控制研究[D];華南理工大學(xué);2002年
8 王濤;感應(yīng)電機(jī)交流調(diào)速魯棒控制若干方法研究[D];西南交通大學(xué);2007年
9 王攀攀;感應(yīng)電機(jī)定轉(zhuǎn)子故障的微粒群診斷方法研究[D];中國礦業(yè)大學(xué);2013年
10 陸可;感應(yīng)電機(jī)狀態(tài)估計(jì)和參數(shù)辨識(shí)若干新方法研究[D];西南交通大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 關(guān)e,
本文編號(hào):1715748
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1715748.html