天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 信息類博士論文 >

基于MEMS工藝的柔性基底磁通門傳感器關(guān)鍵技術(shù)研究

發(fā)布時(shí)間:2018-03-18 06:52

  本文選題:磁通門 切入點(diǎn):MEMS 出處:《西北工業(yè)大學(xué)》2016年博士論文 論文類型:學(xué)位論文


【摘要】:磁通門傳感器因其在溫度穩(wěn)定性、精度、分辨率和靈敏度方面的優(yōu)勢(shì),以及結(jié)構(gòu)簡(jiǎn)單、可測(cè)量靜態(tài)和低頻磁場(chǎng)的特性,使其成為綜合性能最好的矢量磁場(chǎng)傳感器。柔性基底材料具有良好的彎曲延展性、生物兼容性和輕質(zhì)廉價(jià)等特性,使其擁有巨大的應(yīng)用前景。隨著MEMS(微機(jī)電系統(tǒng))工藝的發(fā)展,以及柔性基底材料研究和柔性器件應(yīng)用領(lǐng)域的不斷擴(kuò)大,結(jié)合磁通門和柔性基底的優(yōu)勢(shì),研究基于MEMS工藝的柔性基底磁通門傳感器,能進(jìn)一步擴(kuò)展磁通門在非平面表面磁場(chǎng)檢測(cè)、在線電流測(cè)量、生物醫(yī)學(xué)檢測(cè)、可穿戴傳感器以及柔性電子等領(lǐng)域的應(yīng)用。然而MEMS工藝和柔性化給磁通門也帶來了許多新的挑戰(zhàn)和問題,MEMS工藝與微電子工藝兼容,磁通門和處理電路可以集成到一塊芯片上,這就需要一種總體設(shè)計(jì)方法來優(yōu)化系統(tǒng)性能;相比立體結(jié)構(gòu),平面結(jié)構(gòu)磁通門不用實(shí)現(xiàn)上下層線圈互連,降低了工藝難度,但其線圈激勵(lì)效率較差、功耗較高,需要研究如何優(yōu)化線圈和鐵芯拓?fù)浣Y(jié)構(gòu);基于MEMS工藝的磁通門采用薄膜鐵芯,其軟磁性能較傳統(tǒng)磁通門采用的帶材鐵芯有大幅下降,并且隨著體積的減小噪聲顯著增大,研究薄膜鐵芯軟磁性能提升十分必要;在應(yīng)用領(lǐng)域,結(jié)合磁通門和柔性基底的優(yōu)點(diǎn),研究基于磁通門原理的柔性基底電流傳感器,有望提高目前電流傳感器在線測(cè)試能力和測(cè)量精度。針對(duì)以上提到的這些挑戰(zhàn)和問題,本文在理論分析的基礎(chǔ)上,針對(duì)磁通門傳感器鐵芯線圈拓?fù)浣Y(jié)構(gòu)和鐵芯軟磁性能這兩個(gè)方面對(duì)傳感器性能進(jìn)行優(yōu)化,采用MEMS工藝制備了柔性基底磁通門,并應(yīng)用其進(jìn)行了磁場(chǎng)和電流檢測(cè)。本文的主要工作及創(chuàng)新性研究成果如下:1、提出了一種基于MEMS工藝的柔性基底磁通門制備方法,并應(yīng)用制備得到的柔性基底磁通門進(jìn)行了電流在線測(cè)量;贛EMS工藝,結(jié)合磁通門高精度、高穩(wěn)定性等優(yōu)勢(shì),以及柔性基底可彎曲延展的特性,制備了一種具有柔性基底的磁通門電流傳感器,并利用其進(jìn)行了電流在線測(cè)量。制備得到的這種柔性基底磁通門電流傳感器既具有磁通門傳感器精度高的特點(diǎn),又具備洛可夫斯基線圈(空心感應(yīng)線圈)方便在線測(cè)量的優(yōu)勢(shì)。2、提出了一種電壓激勵(lì)磁通門SPICE模型,并利用此模型對(duì)磁通門的鐵芯結(jié)構(gòu)參數(shù)、線圈結(jié)構(gòu)參數(shù)、鐵芯磁參數(shù)和激勵(lì)電壓參數(shù)進(jìn)行優(yōu)化。磁通門SPICE模型的建立可以將磁通門傳感器和處理電路進(jìn)行聯(lián)合仿真,進(jìn)而可以對(duì)整個(gè)系統(tǒng)進(jìn)行整體優(yōu)化,而現(xiàn)有的磁通門SPICE模型都是電流激勵(lì)的,與實(shí)際情況有一定差距。本文使用反正切函數(shù)描述鐵芯磁滯回線,用電壓來激勵(lì)磁通門,將磁通門建模歸結(jié)為變系數(shù)非齊次常微分方程組求解問題,最后用SPICE實(shí)現(xiàn)了該模型的求解。此模型能在已知激勵(lì)電壓、線圈匝數(shù)、鐵芯尺寸、鐵芯磁滯回線數(shù)據(jù)和外磁場(chǎng)的基礎(chǔ)上,方便快速地得到磁通門的輸入輸出特性。3、提出了一種基于MEMS工藝的磁通門用不同粘附層薄膜鐵芯材料制備方法;贛EMS工藝的磁通門采用軟磁材料薄膜作為鐵芯,然而薄膜鐵芯較傳統(tǒng)磁通門使用的帶材鐵芯在軟磁性能方面有大幅下降,并且隨著鐵芯體積的減小噪聲顯著增大。本文在理論分析磁通門鐵芯需要的軟磁性能的基礎(chǔ)上,通過濺射工藝研究了四種不同粘附層基底對(duì)Ni81Fe19薄膜鐵芯軟磁性能的影響,同時(shí)研究了不同電鍍工藝條件下NiFe合金薄膜的軟磁性能,以及不同應(yīng)力條件對(duì)鐵芯軟磁性能的影響。研究結(jié)果指出在常用粘附層金屬材料中鉭最適合作為Ni81Fe19薄膜鐵芯的粘附層基底;電鍍NiFe合金的最佳電鍍條件;以及不同方向應(yīng)力對(duì)鐵芯軟磁性能的影響。4、提出了一種基于退磁場(chǎng)理論的平面結(jié)構(gòu)磁通門低功耗方法,并根據(jù)此方法對(duì)平面結(jié)構(gòu)磁通門進(jìn)行了結(jié)構(gòu)優(yōu)化和仿真驗(yàn)證。平面結(jié)構(gòu)磁通門具有結(jié)構(gòu)和制備簡(jiǎn)單的優(yōu)點(diǎn),但因其激勵(lì)效率較差、激勵(lì)線圈電阻較大導(dǎo)致的功耗偏大問題有待進(jìn)一步研究。本文在分析平面結(jié)構(gòu)磁通門理論的基礎(chǔ)上,給出了利用退磁場(chǎng)理論降低傳感器功耗的辦法,并在此方法基礎(chǔ)上設(shè)計(jì)了幾種平面結(jié)構(gòu)磁通門,最后對(duì)它們進(jìn)行了磁場(chǎng)仿真驗(yàn)證,仿真結(jié)果為進(jìn)一步器件制備提供了理論支持。本文的研究結(jié)合國家自然科學(xué)基金課題“微型磁通門的低功耗技術(shù)研究(No.60874101)”和教育部高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金課題“基于多孔軟磁薄膜的微型磁通門低功耗技術(shù)研究(No.20126102110031)”進(jìn)行,對(duì)基于MEMS工藝的磁通門傳感器總體設(shè)計(jì)優(yōu)化、降低功耗、薄膜鐵芯制備、非平面磁場(chǎng)測(cè)量、電流測(cè)量等有重要意義,研究成果可應(yīng)用于電流檢測(cè)、非平面磁場(chǎng)測(cè)量、柔性電子、生物醫(yī)學(xué)、可穿戴傳感器、小型機(jī)器人控制、無損探傷、磁標(biāo)記檢測(cè)、飛機(jī)導(dǎo)航等諸多領(lǐng)域。
[Abstract]:Fluxgate sensor because of its accuracy in temperature stability, sensitivity and resolution of the advantages and characteristics of simple structure, can measure static and low-frequency magnetic field, the magnetic field vector sensor. The best comprehensive performance of flexible base material has good bending ductility, biological compatibility and light, cheap and other characteristics, it has great prospect. With MEMS (microelectromechanical systems) technology development, and constantly expand the research on flexible substrate and flexible device applications, combined with the flux gate and a flexible substrate, the flexible substrate research of fluxgate sensor based on MEMS technology, to further expand the fluxgate magnetic field in non planar surface detection, online the current measurement, biomedical detection, wearable sensors and application of flexible electronics and other fields. However, the process of MEMS and the flexibility to bring a lot of new fluxgate The challenges and problems, compatible with MEMS technology and microelectronics technology, fluxgate sensor and processing circuit can be integrated into a chip, which requires an overall design method to optimize the system performance; compared with three-dimensional structure, plane structure withfluxgates realized without interconnecting coil, reduces the difficulty of the process, but the coil excitation efficiency is poor, high power consumption, need to study how to optimize the topology of the coil and the iron core; fluxgate MEMS process using thin film based on the iron core, iron core of the soft magnetic strip can be compared with the traditional fluxgate with a sharp decline, and with decreasing noise volume increased significantly, enhance the soft magnetic properties of thin film core is necessary; in the application domain, combined with the advantages of fluxgate and flexible substrate, the flexible substrate of current sensor based on the principle of fluxgate sensor, is expected to improve the current online testing capability and measurement precision . according to these challenges and problems mentioned above, this paper on the basis of theoretical analysis, aiming to optimize the sensor performance of fluxgate sensor coil topology and core soft magnetic properties of these two aspects, the fluxgate flexible substrate were fabricated by MEMS process, and the application of magnetic field and current detection. The work and achievements are summarized as follows: 1, this paper proposes a flexible substrate flux gate preparation method based on MEMS technology, and the application of fluxgate flexible substrate prepared by current on-line measurement. MEMS technology based on the combination of fluxgate high precision, high stability and other advantages, and the characteristics of flexible substrate flexible extension, a flexible substrate current fluxgate sensor was prepared, and then analyzes the current on-line measurement. The flexible substrate fluxgate current sensor was prepared by both Has the characteristics of fluxgate sensor with high precision, but also have the Roco J J Ki coil (hollow coil) convenient online measurement of the advantages of.2, puts forward a SPICE model of fluxgate excitation voltage, and using this model the core structural parameters of fluxgate, coil structure parameters, magnetic parameters and excitation voltage of magnetic flux parameters were optimized. SPICE model can be combined with the simulation of fluxgate sensor and processing circuit, which can optimize the whole system, and the existing SPICE model of fluxgate is current excitation, there is a certain gap between the actual situation. This paper use the arctangent function to describe the core hysteresis loop, voltage to excitation flux gate, will fluxgate modeling due to non-homogeneous ordinary differential equations to solve the problem of variable coefficient, the solution of the model is realized by SPICE. This model can be known excitation voltage, line The number of turns, core size, based on the hysteresis curve of the core data and the external magnetic field, fast and convenient to get the.3 input and output characteristics of fluxgate, presents a different adhesion film core materials preparation method of fluxgate based on MEMS technology. The flux gate MEMS process with soft magnetic film as the core based on however, compared with the traditional film strip core core fluxgate used in soft magnetic properties have declined sharply, and with the decrease of the volume of the core of the noise increased significantly. This paper analysis the soft magnetic properties of fluxgate core needed in theory, through the sputtering process on the four different substrate adhesion layer on Ni81Fe19 film soft magnetic core the influence also studied the soft magnetic properties of NiFe alloy films with different plating conditions, and the effect of different stress conditions on the core of soft magnetic properties. The results pointed out in The commonly used adhesive layer of tantalum in metal materials as the most suitable adhesion layer Ni81Fe19 films core; optimum plating conditions of NiFe alloy electroplating; and different direction of stress effect on core soft magnetic properties of.4, proposes a method of planar structure consumption fluxgate low power demagnetizing field based on the theory, and according to the method of plane the structure of the fluxgate are optimized and simulated. The plane structure of fluxgate structure and has the advantages of simple preparation, but because of its poor incentive incentive efficiency, power consumption due to the large coil resistance is big problems to be further studied. Based on the analysis of the plane structure withfluxgates theory, gives a way to reduce the power consumption of the sensor the demagnetizing field theory, and based on this method we designed several plane structure of fluxgate, they were at the end of the magnetic field simulation, the simulation results for further device system Prepare and provide theoretical support. The research of low power of National Natural Science Fund Project "micro fluxgate based on (No.60874101) and the specialized research fund for the doctoral program of higher education project" micro fluxgate low power technology of porous soft magnetic thin film based on the (No.20126102110031) ", to reduce power consumption optimization overall, the design of fluxgate sensor based on MEMS technology, the core of film preparation, non planar magnetic field measurement, current measurement has important significance. The research results can be applied to current detection, non planar magnetic field measurement, flexible electronics, biomedicine, wearable sensors, robot control, nondestructive testing, magnetic marker detection, aircraft navigation etc. in many fields.

【學(xué)位授予單位】:西北工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP212

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張雅茹,蘭慕杰,王東紅;微型磁通門傳感器研究的現(xiàn)狀與未來發(fā)展[J];遙測(cè)遙控;2002年04期

2 李南;呂曉煜;岳喜展;;微型磁通門傳感器研究[J];電測(cè)與儀表;2007年02期

3 何靜;李斌;;基于二次諧波脈沖幅值法的磁通門傳感器[J];傳感器與微系統(tǒng);2007年07期

4 翁孟超;楊志強(qiáng);宣仲義;;微型磁通門傳感器的制備與測(cè)試研究進(jìn)展[J];儀表技術(shù)與傳感器;2008年06期

5 周榕軍;劉大明;洪澤宏;趙永;周國華;;非理想條件下三軸磁通門傳感器誤差修正方法[J];艦船科學(xué)技術(shù);2011年03期

6 龐鴻鋒;羅詩途;陳棣湘;潘孟春;張琦;;任意姿態(tài)變化下的磁通門傳感器誤差校正[J];測(cè)試技術(shù)學(xué)報(bào);2011年04期

7 顧偉,褚建新;磁通門傳感器的一體化與微型化[J];磁性材料及器件;1997年04期

8 ;小型磁通門傳感器[J];傳感器世界;2001年10期

9 石志勇,王懷光,呂游;一種三探頭磁通門傳感器的設(shè)計(jì)[J];傳感技術(shù)學(xué)報(bào);2005年02期

10 張瑞平;劉俊;劉文怡;;高靈敏度的磁通門傳感器[J];彈箭與制導(dǎo)學(xué)報(bào);2005年S1期

相關(guān)會(huì)議論文 前6條

1 廖懷哲;趙華;陳斯文;王勁東;周斌;馮永勇;薛永亮;;同芯型磁通門傳感器的研制[A];第二十四屆全國空間探測(cè)學(xué)術(shù)交流會(huì)論文摘要集[C];2011年

2 廖懷哲;趙華;陳斯文;王勁東;周斌;馮永勇;薛永亮;;特小型磁通門傳感器的研制[A];第二十三屆全國空間探測(cè)學(xué)術(shù)交流會(huì)論文摘要集[C];2010年

3 廖懷哲;;一種新式同芯型磁通門傳感器[A];中國空間科學(xué)學(xué)會(huì)空間探測(cè)專業(yè)委員會(huì)第二十六屆全國空間探測(cè)學(xué)術(shù)研討會(huì)會(huì)議論文集[C];2013年

4 薛永亮;廖懷哲;周斌;翁成翰;;磁通門傳感器篩選方法[A];第二十五屆全國空間探測(cè)學(xué)術(shù)研討會(huì)摘要集[C];2012年

5 廖懷哲;趙華;陳斯文;周斌;馮永勇;;小型化高精度磁通門傳感器的研制[A];中國空間科學(xué)學(xué)會(huì)第七次學(xué)術(shù)年會(huì)會(huì)議手冊(cè)及文集[C];2009年

6 權(quán)修橋;;民機(jī)電子設(shè)備磁影響試驗(yàn)方法研究[A];2010年全國電磁兼容會(huì)議論文集[C];2010年

相關(guān)博士學(xué)位論文 前2條

1 楊波;時(shí)間差型磁通門傳感器理論建模與實(shí)驗(yàn)研究[D];南京理工大學(xué);2015年

2 楊尚林;基于MEMS工藝的柔性基底磁通門傳感器關(guān)鍵技術(shù)研究[D];西北工業(yè)大學(xué);2016年

相關(guān)碩士學(xué)位論文 前10條

1 何靜;寬帶低噪聲磁通門傳感器[D];西北工業(yè)大學(xué);2007年

2 李超;高精度單軸磁通門傳感器的設(shè)計(jì)與實(shí)現(xiàn)[D];哈爾濱工程大學(xué);2011年

3 葉蘭;基于隨機(jī)共振理論的磁通門傳感器研究[D];華中科技大學(xué);2013年

4 楊鵬飛;基于三端式磁通門傳感器的質(zhì)量測(cè)量系統(tǒng)設(shè)計(jì)[D];華中科技大學(xué);2014年

5 王向鑫;雙磁路磁通門傳感器及磁場(chǎng)測(cè)量系統(tǒng)的研究[D];哈爾濱理工大學(xué);2016年

6 楊圓圓;三分量地磁場(chǎng)檢測(cè)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];東南大學(xué);2016年

7 干露;高靈敏度環(huán)形磁通門傳感器的研究與設(shè)計(jì)[D];華中科技大學(xué);2008年

8 馬波;遲滯時(shí)間差型磁通門傳感器及磁測(cè)裝置的設(shè)計(jì)[D];吉林大學(xué);2010年

9 尹春曉;磁通門傳感器及其模擬處理電路的研究[D];吉林大學(xué);2010年

10 焦雄峰;三軸磁通門傳感器及其在姿態(tài)測(cè)試中的應(yīng)用研究[D];華北工學(xué)院;2001年

,

本文編號(hào):1628473

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1628473.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶559e1***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
免费在线播放不卡视频| 一区二区不卡免费观看免费| 日本人妻精品中文字幕不卡乱码 | 青草草在线视频免费视频| 亚洲国产丝袜一区二区三区四 | 二区久久久国产av色| 办公室丝袜高跟秘书国产 | 日本在线 一区 二区| 午夜传媒视频免费在线观看| 少妇一区二区三区精品| 色婷婷国产精品视频一区二区保健| 国产精品免费视频视频| 欧美不卡一区二区在线视频| 人体偷拍一区二区三区| 久久精品蜜桃一区二区av| 午夜传媒视频免费在线观看| 久久国内午夜福利直播| 欧美午夜视频免费观看| 自拍偷拍福利视频在线观看| 日韩精品亚洲精品国产精品| 国产高清精品福利私拍| 亚洲中文在线男人的天堂| 国产内射一级一片内射高清| 麻豆国产精品一区二区三区| 好骚国产99在线中文| 国产欧美一区二区色综合| 日本高清视频在线观看不卡| 男女一进一出午夜视频| 亚洲中文字幕视频在线观看| 夫妻性生活一级黄色录像 | 真实偷拍一区二区免费视频| 精品人妻精品一区二区三区| 亚洲国产精品肉丝袜久久| 中文字字幕在线中文乱码二区| 九九热视频经典在线观看| 午夜福利直播在线视频| 国产一区二区三中文字幕 | 尹人大香蕉一级片免费看| 白白操白白在线免费观看| 国自产拍偷拍福利精品图片| 国内精品美女福利av在线|