天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

音樂和弦識別的研究

發(fā)布時間:2018-03-13 09:18

  本文選題:和弦識別 切入點:對數音級輪廓特征 出處:《天津大學》2016年博士論文 論文類型:學位論文


【摘要】:隨著互聯(lián)網帶寬的增長,以及多媒體信息壓縮技術的不斷發(fā)展,互聯(lián)網上數字音樂的存儲和發(fā)布越來越普遍。為了應對用戶隨時隨地檢索的需求,基于內容的音樂檢索應運而生。MIR中的中層特征就包括和弦,它包含了大量能夠表現(xiàn)音樂屬性的信息,對于分析音樂結構和旋律方面具有非常重要的作用。因此,本文針對音樂和弦識別進行了深入的研究,提出了魯棒性音樂和弦識別特征和兩種和弦估計方法。本文綜合應用部分樂理、信號處理、模式識別等相關知識,提出了序列化稀疏表示分類和序列化支持向量機的和弦識別方法。其主要研究內容是以信號處理為基礎,從特征提取和和弦估計兩方面研究和弦識別。主要完成的工作包括以下幾個方面:(1)提出了魯棒性對數音級輪廓特征。和弦識別的一個關鍵是特征,在基于節(jié)拍的基礎上提出了LPCP,使得LPCP能夠更好地表達音頻內容,提高和弦識別率;同時為了盡可能降低歌聲的影響,在計算PCP前,對音頻文件進行歌聲伴奏分離,使得伴奏能夠更好地包含和弦特征,這樣音頻文件對和弦識別具有更好的魯棒性;(2)本文提出了基于序列化稀疏表示分類器的音樂和弦識別方法。在稀疏表示分類中,建立和弦樣本數據庫,對輸入的音頻片段進行和弦估計。在此基礎上,結合隱形馬爾科夫鏈模型,克服需要大量訓練得到模型參數的缺點,提出序列化稀疏表示模型。在對MIREX’09的數據庫中的大小和弦識別時,本論文提出的方法在使用本文的特征進行識別時,識別率均高于目前的識別方法。(3)提出了序列化支持向量機的音樂和弦識別方法。為了克服稀疏表示分類時間較長的缺點,引入支持向量機用于和弦識別。該模型只需要提前訓練好參數,用于和弦估計時間較短。同時結合音樂和弦在時域上的變化特點,進一步改進支持向量機,提出序列化支持向量機模型。
[Abstract]:With the growth of Internet bandwidth and the continuous development of multimedia information compression technology, the storage and distribution of digital music on the Internet is becoming more and more common. Content-Based Music Retrieval (CBIR) emerges as the times require. The middle level features of music retrieval include chords, which contain a large amount of information that can express the musical properties, and play a very important role in analyzing the music structure and melody. In this paper, the characteristics of robust music chord recognition and two kinds of chord estimation methods are proposed, and some related knowledge, such as music theory, signal processing, pattern recognition and so on, are synthetically applied in this paper. In this paper, a method of serialized sparse representation classification and serialization support vector machine is proposed, which is based on signal processing. This paper studies the recognition of chords from two aspects: feature extraction and chord estimation. The main work accomplished includes the following aspects: 1) the robust logarithmic tone level contour feature is proposed. One of the key points of chord recognition is the feature. In order to reduce the influence of singing as much as possible, LPCP is used to separate audio files before calculating PCP, which makes LPCP express audio content better and improve the recognition rate of chords. In this paper, a method of music chord recognition based on serialized sparse representation classifier is proposed. The chord sample database is established, and the input audio segment is estimated by the chord. On this basis, combined with the invisible Markov chain model, it overcomes the shortcoming that a lot of training is needed to obtain the model parameters. A serialized sparse representation model is proposed. When recognizing the size and chord in the MIREX'09 database, the method proposed in this paper uses the features of this paper to recognize. The recognition rate is higher than that of the current recognition method. (3) Serialization support vector machine (SVM) is proposed to recognize music and chord. In order to overcome the disadvantage of long time of sparse representation classification, the method of serialized support vector machine (SVM) is proposed. Support vector machine (SVM) is introduced for chord recognition. The model only needs to train the parameters in advance, and the estimation time of chord is short. At the same time, the support vector machine (SVM) is further improved according to the changing characteristics of music chord in time domain. A serialization support vector machine model is proposed.
【學位授予單位】:天津大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TN912.3

【相似文獻】

相關博士學位論文 前1條

1 饒中洋;音樂和弦識別的研究[D];天津大學;2016年



本文編號:1605750

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1605750.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶b503a***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com