液壓驅(qū)動下肢外骨骼機器人關(guān)鍵技術(shù)研究
本文選題:外骨骼 切入點:機器人 出處:《浙江大學(xué)》2017年博士論文 論文類型:學(xué)位論文
【摘要】:助力型下肢外骨骼機器人是一類可以被人穿戴,提高穿戴者行走耐久性、行走速度、負重能力等體能的智能裝備。助力型下肢外骨骼機器人可實現(xiàn)行走、跑、跳等多樣化的運動形式,可在戰(zhàn)場、搶險救災(zāi)、野外施工作業(yè)等缺少電力、燃料等能源供應(yīng)和道路交通的野外工作環(huán)境發(fā)揮重要作用。因此助力型下肢外骨骼機器人相關(guān)研究是國際學(xué)術(shù)前沿,其難點在于實現(xiàn)樣機的高承載能力、高功率密度、長工作時間等特性。本學(xué)位論文針對液壓驅(qū)動助力型下肢外骨骼機器人的關(guān)鍵技術(shù)開展研究,選題具有很強的工程應(yīng)用背景和重要的學(xué)術(shù)研究價值。本課題開展中做出了以下創(chuàng)新性研究:1.研制了高功率密度長運行時間的外骨骼機器人動力系統(tǒng)。當(dāng)前外骨骼機器人的動力系統(tǒng)多采用鋰電池供應(yīng)能源,然而鋰電池能量密度有限,難以保證機器人大功率、長時間工作。為解決這一難題,本學(xué)位論文研制了外骨骼機器人發(fā)動機動力系統(tǒng)樣機,該樣機重約20kg,最大可向機器人提供1.5kW液壓能源與160W直流電力,在攜帶5kg燃料時該樣機可以維持1.2kW總功率持續(xù)運行4.5小時,滿足上述功率及容量的條件下該方案整機(含燃料)重量僅占蓄電池-電機方案中鋰電池重量(39kg)的64%。2.提出了一種圖形化多目標(biāo)優(yōu)化方法。在動力系統(tǒng)研發(fā)中提出了彈簧增壓油箱實現(xiàn)機器人液壓系統(tǒng)閉式回路,避免了空氣吸入、大氣中顆粒污染物混入及液壓泵氣蝕。彈簧增壓油箱的設(shè)計存在重量、空間體積、增壓壓力等6項優(yōu)化指標(biāo),F(xiàn)有的多目標(biāo)優(yōu)化方法均依靠偏好模型來權(quán)衡各項性能指標(biāo);而彈簧增壓油箱的優(yōu)化問題由于優(yōu)化目標(biāo)多、優(yōu)化目標(biāo)之間無法比較等因素難以建立偏好模型。本文提出了一種多目標(biāo)優(yōu)化方法,采用圖形化界面展示優(yōu)化結(jié)果,具有流程清晰、數(shù)據(jù)展示直觀的優(yōu)點,彌補了以數(shù)據(jù)為輸出的多數(shù)現(xiàn)有方法的不足,可以協(xié)助設(shè)計者方便快捷的獲得最終解,尤其具有求解過程不需要設(shè)計者提供偏好模型的優(yōu)點,因此與現(xiàn)有方法相比在實際問題中可以得到更廣泛的應(yīng)用。3.開發(fā)了易于功能擴展和改進的控制器,提出了一種用于控制器的多任務(wù)動態(tài)調(diào)度框架。本論文提出的主板-功能模塊結(jié)構(gòu)的機器人控制系統(tǒng)具有工作電壓低、功耗小的特點,且易于功能擴展和改進。針對控制系統(tǒng)工作中需要對大量任務(wù)高速調(diào)度執(zhí)行的特點提出了一種多任務(wù)動態(tài)調(diào)度框架,利用任務(wù)間固有的依賴關(guān)系維護活動任務(wù)表,可以使控制器在不采用實時操作系統(tǒng)的情況下完成多任務(wù)的并發(fā)執(zhí)行,避免了實時操作系統(tǒng)任務(wù)同步與調(diào)度帶來的處理器時間損耗與存儲空間損耗。本文具體研究內(nèi)容如下:第一章,在助力型下肢外骨骼機器人相關(guān)文獻的基礎(chǔ)上對其發(fā)展現(xiàn)狀進行了總結(jié);同時分析了外骨骼機器人應(yīng)用環(huán)境的特征及需求,闡明了本課題的主要研究內(nèi)容,確定了本文研究的機器人采用發(fā)動機驅(qū)動液壓作動器的總體方案;最后介紹了本課題研究難點。第二章,外骨骼機器人下肢機構(gòu)設(shè)計研究。首先介紹了步態(tài)采集裝置及獲取的步態(tài)數(shù)據(jù);進而論述下肢機構(gòu)的需求以及綜合考慮了結(jié)構(gòu)強度、承載能力、對穿戴者的適當(dāng)保護措施等因素的設(shè)計實現(xiàn)。主動關(guān)節(jié)采用液壓伺服閥驅(qū)動非對稱缸,以獲取足夠的下肢關(guān)節(jié)驅(qū)動力。在下肢機構(gòu)研發(fā)的基礎(chǔ)上分析了其運動學(xué)模型與靜力學(xué)模型。第三章,外骨骼機器人動力系統(tǒng)設(shè)計研究。本章通過對比基于發(fā)動機-燃料方案與基于電池方案展示了前者在功率質(zhì)量比上的優(yōu)勢。介紹了動力系統(tǒng)原動機模塊、液壓回路及發(fā)電模塊等子系統(tǒng)的研發(fā)實現(xiàn)及工作特性。提出了基于圖形界面的多目標(biāo)優(yōu)化方法,并采用此方法完成了增壓油箱的多目標(biāo)優(yōu)化設(shè)計,從而實現(xiàn)動力系統(tǒng)閉式液壓回路。建立了動力系統(tǒng)發(fā)動機功率控制模型以及液壓回路負載流量觀測模型。第四章,控制系統(tǒng)硬件及程序設(shè)計研究。硬件上采用主板/功能模塊結(jié)構(gòu)方案,研制了數(shù)據(jù)采集、作動器驅(qū)動的多個模塊,對數(shù)據(jù)采集模塊采樣精度做出詳細分析,結(jié)果表明采樣精度滿足外骨骼機器人系統(tǒng)需求。在控制系統(tǒng)程序方面分析了其構(gòu)成與運行方式,提出了多任務(wù)動態(tài)調(diào)度策略實現(xiàn)多任務(wù)高效并發(fā)執(zhí)行。第五章,外骨骼機器人物理樣機試驗研究。試驗研究從動力系統(tǒng)特性、下肢空載運動特性、整機承載特性等多個方面驗證動力系統(tǒng)的輸出能力及運行特性、下肢機械關(guān)節(jié)的運動性能,并對前文提出的模型進行驗證。第六章,對論文研究工作進行總結(jié),突出了研究成果及創(chuàng)新點,并對將來工作的方向和內(nèi)容做出展望。
[Abstract]:Assist the lower extremity exoskeleton robot is a kind of can be worn, improve wearer walking durability, walking speed, intelligent equipment and other physical loading capability. The power type lower extremity exoskeleton robot can walk, run, jump, exercise form diversification, can be on the battlefield, disaster relief, field work and lack of power fuel, energy supply and road traffic field work environment play an important role. Therefore research power type lower extremity exoskeleton robot is an international academic frontier, it is difficult to achieve high bearing capacity, high power density, long working time and other characteristics. Key technologies are researched in this thesis, the hydraulic driving type lower limbs the bones of the robot, the value of academic research topic has great application background and important. This research made the following research: 1. developed high The exoskeleton robot dynamic system power density long running time. The dynamic system of the exoskeleton robot using lithium battery energy supply, however, the energy density of the lithium battery is limited, it is difficult to ensure the robot with high power and long time work. In order to solve this problem, this paper developed the degree of exoskeleton robot prototype engine power system, the the prototype weighs about 20kg, can provide 1.5kW hydraulic energy and 160W DC power to the robot, carrying 5kg fuel of the prototype can maintain the total power of 1.2kW continuous operation for 4.5 hours, the scheme of the power and meet the capacity conditions (including fuel) weight accounted for lithium battery weight batteries - motor program (39kg) the 64%.2. presents a graphical multi-objective optimization method in power system research. We put forward the spring pressurizing oil tank to achieve the robot close loop hydraulic system, avoid empty The gas inhaled particulate pollutants into the atmosphere. And the hydraulic pump cavitation has weight, design pressure of the spring tank volume, 6 optimization indexes of pressure. Optimization depends on preference model to weigh the performance indexes of the existing multi-objective method; and the pressure of the spring tank because of the optimization goal optimization problem, it is difficult to establish the model of preference the optimization goal cannot be compared between other factors. This paper proposes a multi-objective optimization method, using the graphical interface to display the results of optimization, has advantages of clear flow, data display, to make up for the lack of data in most existing methods of output, can help designers to easily and quickly get the final solution, especially with the solving process does not require designers to provide advantages of preference model,.3. can be applied more widely developed easily in practical problems so compared with the existing methods The extension and improvement of the proposed controller, a controller for a multi task dynamic scheduling framework. The control system function module structure of the robot is proposed in this paper, the motherboard with low working voltage, small power consumption, and easy extension and improvement. In order to propose a multi task dynamic scheduling framework for a large number of features high speed task scheduling execution control system work, the use of inter task dependencies inherent in the maintenance task list, concurrency controller can be multi task in a real-time operating system under the condition of execution, to avoid the loss and loss of storage space, processor time synchronization and scheduling bring real-time operating system. In this paper, the specific research task the contents are as follows: the first chapter, based on the power type lower extremity exoskeleton robot on the related literature to summarize the status of the development and analysis; The characteristics and demands of the exoskeleton robot application environment, expounds the main research contents of this topic, determines the research robot using engine driven hydraulic actuator for the overall scheme; finally introduced the research difficulties. In the second chapter, study on Mechanism Design of limb exoskeleton robot. First introduced the gait acquisition device and the gait data acquisition; and then discusses the legal mechanism of demand and considering the structural strength, bearing capacity, design factors on the wearer's proper protective measures. The active joint adopts hydraulic servo valve driven asymmetric cylinder, to obtain sufficient driving force. Based on lower limb joint leg mechanism on the development of the analysis the kinematics model and static model. In the third chapter, the exoskeleton robot dynamic system design research. This chapter through the comparison based on the engine with fuel scheme based on battery In the former scheme shows the advantage of power quality than on power system. This paper introduces the prime mover module, power module and so on research and development of hydraulic circuit and the realization of the system and working characteristics is proposed. The multi-objective optimization method based on graphical interface, and using this method to complete the multi-objective optimization design of pressure tank, so as to realize the close power system hydraulic power system is established. The power of the engine control model and hydraulic circuit load flow observation model. In the fourth chapter, the design of hardware and program control system. The hardware adopts the motherboard / function module structure, developed a data acquisition module, a plurality of actuator drive, make a detailed analysis of the data acquisition module, sampling precision and the results show that the accuracy meets the needs of the exoskeleton robot system. The control system program to analyze the composition and operation mode, put forward multi tasks Service dynamic scheduling strategy to achieve multi task efficient concurrent execution. In the fifth chapter, experimental study on exoskeleton robot prototype. Experimental study on dynamic characteristics from the system, the motion characteristics of the bearing load of lower extremity, output capacity and operating characteristics of many aspects of performance verification of the dynamic system, the motion performance of lower extremity mechanical joint, and the proposed model verify. The sixth chapter, the thesis summarizes the research work, the research results and innovation, and the contents and directions for future work is prospected.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TP242
【參考文獻】
相關(guān)期刊論文 前7條
1 TRAN Huu-Toan;CHENG Hong;LIN Xi Chuan;DUONG Mien-Ka;HUANG Rui;;The relationship between physical human-exoskeleton interaction and dynamic factors:using a learning approach for control applications[J];Science China(Information Sciences);2014年12期
2 方明周;王瑜;朱鈞;何立冬;曹恒;;負重型下肢外骨骼機器人機構(gòu)研究與仿真[J];華東理工大學(xué)學(xué)報(自然科學(xué)版);2014年05期
3 賈山;路新亮;韓亞麗;王興松;;在擺動相中用于下肢外骨骼跟蹤人體踝關(guān)節(jié)軌跡的方法[J];東南大學(xué)學(xué)報(自然科學(xué)版);2014年01期
4 曹恒;孟憲偉;凌正陽;秦穎頎;賀成坤;;兩足外骨骼機器人足底壓力測量系統(tǒng)[J];傳感技術(shù)學(xué)報;2010年03期
5 曹恒;賀成坤;孟憲偉;凌正陽;;下肢外骨骼服傳感靴的結(jié)構(gòu)優(yōu)化分析[J];工程設(shè)計學(xué)報;2010年01期
6 曹恒;牛思捷;王瑜;孟憲偉;朱軍;;基于ADAMS的助力機械腿結(jié)構(gòu)設(shè)計與仿真[J];工程設(shè)計學(xué)報;2009年05期
7 楊衍明,林方,袁波,李政;超聲定位人體下肢步態(tài)分析儀[J];中國生物醫(yī)學(xué)工程學(xué)報;1997年04期
,本文編號:1588403
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1588403.html