多振膜結(jié)構(gòu)電容式微超聲傳感器關(guān)鍵技術(shù)研究
本文關(guān)鍵詞: 電容式微超聲傳感器 形變特性 頻率特性 聲場(chǎng)特性 出處:《天津大學(xué)》2016年博士論文 論文類型:學(xué)位論文
【摘要】:超聲技術(shù)是聲學(xué)發(fā)展中最活躍的技術(shù)領(lǐng)域之一,在國(guó)防、生物、醫(yī)學(xué)及航空航天等眾多領(lǐng)域得到了廣泛應(yīng)用,而超聲傳感器是實(shí)現(xiàn)力電聲多場(chǎng)耦合與能量轉(zhuǎn)換的關(guān)鍵部件。隨著集成電路制造技術(shù)與微加工技術(shù)的不斷發(fā)展,超聲傳感器的制造與加工技術(shù)也在不斷進(jìn)步。基于MEMS工藝的電容式微超聲傳感器(CMUT)具有聲阻抗低、體積小、靈敏度高、頻帶寬、易于集成等特點(diǎn),在無損檢測(cè)、超聲驅(qū)動(dòng)、醫(yī)學(xué)成像、超聲理療、細(xì)胞控制等高精尖領(lǐng)域具有潛在的優(yōu)勢(shì),受到國(guó)內(nèi)外研究工作者的關(guān)注。本文以CMUT超聲成像系統(tǒng)為應(yīng)用對(duì)象,開展了多振膜結(jié)構(gòu)CMUT關(guān)鍵技術(shù)研究,主要包括形變特性、頻率特性、聲場(chǎng)特性、加工與性能測(cè)試等。(1)針對(duì)帶有真空密閉腔體的全電極覆蓋圓膜CMUT,建立了機(jī)械場(chǎng)均勻載荷撓度模型及機(jī)電耦合非線性載荷吸附模型。該模型不但可量化電極結(jié)構(gòu)參數(shù)、密閉腔體內(nèi)真空度與CMUT撓度、吸附特性之間的關(guān)系,而且與開放空間內(nèi)的單層薄板CMUT模型相比,可為不同載荷條件下的CMUT提供精確預(yù)測(cè)。(2)針對(duì)CMUT多層振膜結(jié)構(gòu),建立了靜態(tài)撓度和動(dòng)態(tài)響應(yīng)頻率的數(shù)學(xué)模型,并對(duì)真實(shí)器件殘余應(yīng)力進(jìn)行補(bǔ)償。該模型將多層結(jié)構(gòu)對(duì)CMUT特性的影響進(jìn)行直觀表述,與仿真結(jié)果及實(shí)驗(yàn)數(shù)據(jù)之間一致性良好,且與傳統(tǒng)單層薄板CMUT模型相比,顯著地提高了理論模型的準(zhǔn)確度。(3)為提高CMUT的面積效率,增強(qiáng)其作為成像系統(tǒng)元件的成像分辨率,本文提出了一種橢圓形振膜CMUT結(jié)構(gòu)。建立了橢圓形CMUT陣元的頻率模型,與相同可動(dòng)面積下的常規(guī)形貌CMUT陣元的特性對(duì)比表明,橢圓形振膜CMUT具有較高的一階工作頻率,由其組成的陣列具有較小的主瓣寬度和旁瓣幅值。(4)為適應(yīng)待測(cè)環(huán)境內(nèi)較大的壓強(qiáng)變化,設(shè)計(jì)了帶孔振膜CMUT結(jié)構(gòu)。與傳統(tǒng)平膜CMUT相比,相同直流偏置電壓下帶孔振膜CMUT平均形變量減小,吸附電壓降低,工作壓強(qiáng)耐受范圍擴(kuò)大。同時(shí),帶孔振膜CMUT可通過參數(shù)調(diào)整,實(shí)現(xiàn)CMUT工作頻率的靈活設(shè)計(jì)。(5)建立了不同振膜結(jié)構(gòu)CMUT的聲場(chǎng)模型,研究了指向性函數(shù)的特性,詳細(xì)分析了陣列設(shè)計(jì)參數(shù)對(duì)聲場(chǎng)指向性的影響。針對(duì)指向性圖中出現(xiàn)的旁瓣現(xiàn)象,研究了多種旁瓣抑制優(yōu)化算法,分別在一維線性陣列和二維平面陣列上有效地降低了旁瓣幅值。(6)針對(duì)CMUT振膜特殊結(jié)構(gòu)進(jìn)行了工藝設(shè)計(jì)與關(guān)鍵工藝討論,對(duì)器件進(jìn)行加工制作與后續(xù)處理。進(jìn)行了CMUT形貌測(cè)試與殘余應(yīng)力測(cè)試,同時(shí),搭建實(shí)驗(yàn)測(cè)試系統(tǒng),進(jìn)行了CMUT力學(xué)、電學(xué)和聲學(xué)性能測(cè)試,得到不同振膜形貌CMUT的撓度、頻率及部分聲學(xué)特性,并進(jìn)行了CMUT單元的一致性檢驗(yàn)。實(shí)驗(yàn)結(jié)果驗(yàn)證了本文設(shè)計(jì)理論與設(shè)計(jì)思想的正確性。
[Abstract]:Ultrasonic technology is one of the most active fields in the development of acoustics. It has been widely used in many fields, such as national defense, biology, medicine, aerospace and so on. Ultrasonic sensor is the key component to realize electroacoustic coupling and energy conversion. With the development of integrated circuit manufacturing technology and micromachining technology, The fabrication and processing technology of ultrasonic sensor is also improving. The capacitive ultrasonic sensor based on MEMS process has the characteristics of low acoustic impedance, small volume, high sensitivity, frequency bandwidth, easy integration, etc., in nondestructive testing, ultrasonic drive, etc. Medical imaging, ultrasound physiotherapy and cell control have potential advantages and have attracted the attention of researchers at home and abroad. In this paper, the key technology of multivibrator membrane structure (CMUT) is studied based on CMUT ultrasonic imaging system. Mainly including deformation characteristics, frequency characteristics, sound field characteristics, Machining and performance testing. (1) aiming at the full electrode covered circular membrane CMUTs with a vacuum closed cavity, a mechanical field uniform load deflection model and a mechanical coupling nonlinear load adsorption model are established. The model can not only quantify the electrode structure parameters, but also can quantify the electrode structure. The relationship between vacuum degree and CMUT deflection, adsorption characteristics, and compared with the CMUT model of single layer thin plate in open space, it can provide accurate prediction for CMUT under different loading conditions. The mathematical model of static deflection and dynamic response frequency is established, and the residual stress of real device is compensated. The model intuitively describes the effect of multilayer structure on CMUT characteristics, which is in good agreement with the simulation results and experimental data. Compared with the traditional single-layer thin plate CMUT model, the accuracy of the theoretical model is significantly improved. In order to improve the area efficiency of the CMUT and enhance its imaging resolution as an imaging system element, the accuracy of the theoretical model is greatly improved. In this paper, an elliptical membrane CMUT structure is proposed, and the frequency model of elliptical CMUT elements is established. The comparison of the characteristics of the elliptical CMUT elements with the conventional topography CMUT elements under the same movable area shows that the elliptical membrane CMUT has a higher first order working frequency. The array consists of a small main lobe width and a side lobe amplitude. 4) in order to adapt to the larger pressure variation in the environment to be measured, a diaphragm CMUT structure with holes is designed. Compared with the conventional flat film CMUT, the structure of the diaphragm is designed. At the same DC bias voltage, the average shape variable of CMUT decreases, the adsorption voltage decreases, and the working pressure tolerance range is enlarged. At the same time, the CMUT with holes can be adjusted by the parameters. In this paper, the sound field model of CMUT with different vibration membrane structure is established, the characteristic of directivity function is studied, and the influence of array design parameters on the directivity of sound field is analyzed in detail. A variety of sidelobe suppression optimization algorithms are studied. The sidelobe amplitudes are effectively reduced on one dimensional linear array and two dimensional planar array respectively. The process design and key process discussion for the special structure of CMUT diaphragm are carried out. The CMUT morphology and residual stress were measured. At the same time, the CMUT mechanical, electrical and acoustic properties were tested, and the deflection of CMUT was obtained. The frequency and some acoustic characteristics are tested and the consistency of the CMUT element is verified. The experimental results verify the correctness of the design theory and the design idea in this paper.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP212
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳德懷;;鋁合金振膜加工成形的幾種工藝方法[J];電聲技術(shù);1986年03期
2 陳德懷;;鈦合金材料制作振膜成型工藝[J];電子工藝技術(shù);1992年03期
3 陳德懷;鋁合金振膜材料的最佳選擇[J];電聲技術(shù);1999年08期
4 杜劍榮;;淺談改善振膜音質(zhì)的機(jī)理[J];電聲技術(shù);2006年09期
5 于振毅;;振膜壓力傳感器[J];儀器制造;1984年03期
6 張保軍,孫濱如;新型高頻復(fù)合振膜的研制[J];電聲技術(shù);1997年02期
7 俞錦元;第三代振膜技術(shù)[J];電聲技術(shù);2000年08期
8 傅慧忠;;帶有從動(dòng)振膜耳機(jī)的低頻頻響分析[J];電聲技術(shù);1987年03期
9 李瑋盛;;聲音細(xì)膩,三頻均衡度高 透明感突出的平面振膜耳機(jī) HiFiMAN HE-500[J];家庭影院技術(shù);2013年02期
10 吳宗漢;;零部件材質(zhì)物性對(duì)ECM特性影響的討論[J];電聲技術(shù);2009年05期
相關(guān)會(huì)議論文 前4條
1 方厚林;許學(xué)忠;董明榮;張芳;郭曉輝;楊俊梅;;壓縮驅(qū)動(dòng)器振膜結(jié)構(gòu)參數(shù)對(duì)振膜特性的影響[A];第三屆上!靼猜晫W(xué)學(xué)會(huì)學(xué)術(shù)會(huì)議論文集[C];2013年
2 孫濱如;陶中達(dá);張保軍;蒼鳳波;;金剛石振膜傳聲器[A];首屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];1992年
3 張保軍;;金剛石振膜傳聲器[A];TFC’03全國(guó)薄膜技術(shù)學(xué)術(shù)研討會(huì)論文摘要集[C];2003年
4 葛立峰;邵晉平;;MEMS超聲傳感器:進(jìn)展與未來[A];加入WTO和中國(guó)科技與可持續(xù)發(fā)展——挑戰(zhàn)與機(jī)遇、責(zé)任和對(duì)策(下冊(cè))[C];2002年
相關(guān)重要報(bào)紙文章 前4條
1 浙江 湯松齡;對(duì)《修復(fù)“啞吧”耳塞》一文的補(bǔ)充[N];電子報(bào);2007年
2 廣東 陳海強(qiáng);淺談“煲”耳機(jī)[N];電子報(bào);2005年
3 上海 戴樹鴻;耳機(jī)海綿套的作用[N];電子報(bào);2003年
4 河南 陳旭光;巧修索尼E-805耳機(jī)[N];電子報(bào);2003年
相關(guān)博士學(xué)位論文 前2條
1 張?chǎng)?多振膜結(jié)構(gòu)電容式微超聲傳感器關(guān)鍵技術(shù)研究[D];天津大學(xué);2016年
2 國(guó)世上;電子輻照鐵電共聚物P(VDF-TrFE)及超聲傳感器的研究[D];武漢大學(xué);2004年
相關(guān)碩士學(xué)位論文 前10條
1 陳曉明;振膜全自動(dòng)轉(zhuǎn)臺(tái)機(jī)的設(shè)計(jì)與研究[D];中北大學(xué);2017年
2 張琪;全自動(dòng)振膜上料傳輸機(jī)的設(shè)計(jì)及其特性仿真分析[D];中北大學(xué);2015年
3 石卓;基于RFID振膜上料機(jī)控制系統(tǒng)的設(shè)計(jì)及實(shí)現(xiàn)[D];中北大學(xué);2015年
4 鄭舟;電容式微加工超聲傳感器的有限元分析及其薄膜的形變研究[D];華南理工大學(xué);2015年
5 李素軍;腐蝕在線監(jiān)測(cè)電磁超聲傳感器研制及應(yīng)用研究[D];南昌航空大學(xué);2015年
6 李超;徑向壓電超聲傳感器的制備及其在混凝土結(jié)構(gòu)健康監(jiān)測(cè)中的應(yīng)用[D];濟(jì)南大學(xué);2015年
7 袁曉;徑向壓電超聲傳感器在混凝土檢測(cè)中的應(yīng)用[D];濟(jì)南大學(xué);2016年
8 艾昶宏;特種超聲傳感器的動(dòng)態(tài)特性實(shí)驗(yàn)及計(jì)算分析[D];華中科技大學(xué);2007年
9 許鵬;電容式超聲傳感器的設(shè)計(jì)[D];華中科技大學(xué);2012年
10 吳誠(chéng);氣介型壓電超聲傳感器的研制[D];華中科技大學(xué);2007年
,本文編號(hào):1528420
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1528420.html