離子輻照光波導(dǎo)及二維材料的結(jié)構(gòu)調(diào)控研究
本文關(guān)鍵詞: 離子輻照 光波導(dǎo) 二維材料 微結(jié)構(gòu) 出處:《山東大學(xué)》2017年博士論文 論文類型:學(xué)位論文
【摘要】:作為一種重要的材料近表面改性和材料表面表征手段,離子輻照技術(shù)在金屬材料、半導(dǎo)體工業(yè)、化學(xué)、磁性材料、醫(yī)學(xué)、物理等各個(gè)領(lǐng)域具有廣泛的應(yīng)用。基于離子與固體材料之間的相互作用,離子輻照技術(shù)還可應(yīng)用于半導(dǎo)體材料的有效摻雜和光波導(dǎo)結(jié)構(gòu)的制備。"集成光學(xué)"(Integrated Optics)這個(gè)概念在1969年被美國貝爾實(shí)驗(yàn)室的S.E.Miller提出,其利用集成電路的方法,以薄膜的形式將所有的光學(xué)元件集成在同一個(gè)小體積襯底上,具有體積小、效率高、性能穩(wěn)定、使用方便等優(yōu)點(diǎn),在光學(xué)信息存儲(chǔ)、光纖傳感技術(shù)、材料科學(xué)研究及大容量和遠(yuǎn)距離的光通訊等領(lǐng)域具有優(yōu)秀的應(yīng)用前景。光波導(dǎo)作為集成光學(xué)的基本元器件結(jié)構(gòu),可以同時(shí)進(jìn)行光信號的傳輸和轉(zhuǎn)換,因此集成光學(xué)元件的性能和作用受到光波導(dǎo)結(jié)構(gòu)的直接影響。目前,離子輻照技術(shù)已經(jīng)發(fā)展成為一種比較成熟的波導(dǎo)制備方法,通過控制輻照離子的種類、能量、劑量和溫度等條件,已經(jīng)在多種玻璃、半導(dǎo)體、聚合物和晶體等材料上制備出波導(dǎo)結(jié)構(gòu)。在離子輻照過程中,離子本身的能量通過電子及核能量損失在與材料的相互作用過程中消耗掉,從而破壞襯底材料的結(jié)構(gòu),導(dǎo)致襯底材料的結(jié)構(gòu)畸變及輻照區(qū)域折射率的變化,而集成光學(xué)元器件的應(yīng)用價(jià)值受到材料結(jié)構(gòu)和光學(xué)性質(zhì)的影響,因此波導(dǎo)內(nèi)部微結(jié)構(gòu)的研究及光學(xué)性質(zhì)的變化具有重要意義。與固體材料不同,納米材料的元激發(fā)、電子態(tài)及材料內(nèi)部的各種相互作用都有獨(dú)特的性質(zhì),在能源、化工、國防、航天航空、醫(yī)藥等均具有廣泛的應(yīng)用。納米材料的應(yīng)用越來越廣泛,使更多的研究人員將關(guān)注點(diǎn)聚集在納米材料在苛刻的輻照環(huán)境中其結(jié)構(gòu)和性質(zhì)的變化及變化機(jī)理上。離子輻照雖會(huì)對材料的結(jié)構(gòu)造成破壞,但是其可以修飾納米材料表面,使材料的一些性能得到改善和優(yōu)化。因此研究納米材料的輻照機(jī)理及宏觀性質(zhì)變化,對未來更好的使用離子輻照技術(shù)進(jìn)行納米材料改性具有重要意義。本文工作主要圍繞離子輻照光學(xué)晶體(MgAl_2O_4、Y2SiO_5、Pr:Y_2SiO_5)和納米薄膜材料(ZnO薄膜、多層WS_2納米片、多層MoSe_2納米片)展開,主要內(nèi)容包括:應(yīng)用離子輻照技術(shù)在光學(xué)晶體上制備平面光波導(dǎo)結(jié)構(gòu);離子輻照光學(xué)晶體及納米薄膜材料的晶格損傷和光學(xué)、力學(xué)等性能變化;應(yīng)用離子輻照技術(shù)調(diào)控多層納米片的層數(shù)、厚度及光學(xué)禁帶寬度。本論文主要采用理論模擬與實(shí)驗(yàn)表征相結(jié)合的方法研究輻照前后光學(xué)晶體及納米薄膜材料的結(jié)構(gòu)、力學(xué)及光學(xué)性能的變化,具體有:應(yīng)用SRIM軟件模擬了離子輻照過程中電子及核能量損傷、離子射程分布等;應(yīng)用棱鏡耦合法測試離子輻照樣品前后在可見光波段的暗模特性曲線;應(yīng)用反射計(jì)算法(RCM)重構(gòu)平面光波導(dǎo)結(jié)構(gòu)的折射率分布;應(yīng)用端面耦合法測試了平面光波導(dǎo)結(jié)構(gòu)在可見光波段的近場光強(qiáng)分布,并利用背反射方法測試了平面光波導(dǎo)結(jié)構(gòu)的傳輸損耗;應(yīng)用有限差分光束傳輸方法(FD-BPM)在RCM重構(gòu)的折射率基礎(chǔ)上模擬光波導(dǎo)的光學(xué)傳輸情況;應(yīng)用盧瑟福背散射/溝道技術(shù)(RBS/Channeling)測試離子輻照前后樣品的損傷情況、元素分布及膜厚;應(yīng)用二次離子質(zhì)譜(SIMS)分析離子輻照后波導(dǎo)層元素的分布情況;應(yīng)用X射線衍射(XRD)、拉曼散射(Raman scattering)、紫外-可見-近紅外分光光度計(jì)(UV-Vis-NIR)、金相顯微鏡、原子力顯微鏡(AFM)、掃描電子顯微鏡(SEM)、透射電子顯微鏡(TEM)測試了離子輻照前后樣品的結(jié)構(gòu)、表面形貌、膜厚及層數(shù)和光學(xué)等特性變化;此外,納米壓痕技術(shù)用來測試了樣品在離子輻照前后力學(xué)性質(zhì)變化。具體研究如下:鎂鋁尖晶石(MgAl_2O_4)屬于立方晶系,具有耐腐蝕、耐高溫、較高的硬度和抗彎強(qiáng)度、穩(wěn)定的物理化學(xué)性能、良好的紫外光至紅外光波段光學(xué)透過率等優(yōu)良特性,是一種理想的功能材料,被廣泛應(yīng)用于短波長通信、化工、電子器件、激光器材料等領(lǐng)域。采用能量為6.0 MeV,劑量為1.5 × 1015 ions/cm~2的O~(3+)輻照MgAl_2O_4單晶樣品制備平面光波導(dǎo)結(jié)構(gòu)。研究結(jié)果表明離子輻照后形成了一個(gè)典型的"位壘+勢阱"型光波導(dǎo)結(jié)構(gòu),O~(3+)輻照MgAl_2O_4單晶樣品的過程中,造成了晶格損傷,產(chǎn)生色心,略微增大了輻照后樣品的吸收率。利用不同能量(6.0 MeV、(6.0+ 6.0)MeV)及劑量(5 × 1014 ions/cm~2、1 ×1015 ions/cm~2、1.5 × 1015 ions/cm~2、(4 × 1014 + 5 × 1014)ions/cm~2)的 C~(3+)輻照MgAl204制備平面光波導(dǎo)結(jié)構(gòu)。研究結(jié)果表明C~(3+)輻照后形成了 "位壘+勢阱"型波導(dǎo)結(jié)構(gòu),C~(3+)輻照的樣品可以很好的限制光的傳輸,且傳輸損耗小于O~(3+)輻照后的樣品的傳輸損耗,多能量多劑量的C~(3+)輻照過程中產(chǎn)生的晶格損傷和色心改變了樣品的晶格結(jié)構(gòu),增大了樣品在可見光至近紅外波段的光吸收率。硅酸釔單晶Y_2SiO_5(YSO)作為一種應(yīng)用廣泛的新型激光晶體材料,具有化學(xué)穩(wěn)定性強(qiáng),熱膨脹系數(shù)低,光學(xué)性能和導(dǎo)熱性能優(yōu)良等優(yōu)點(diǎn),引起了諸多學(xué)者的關(guān)注。應(yīng)用能量為6.0MeV、劑量為1 × 1015ion/cm~2的C~(3+)輻照Y_2SiO_5(YSO)晶體制備了平面光波導(dǎo)結(jié)構(gòu)。研究結(jié)果表明C~(3+)輻照后形成"位壘"型光波導(dǎo)結(jié)構(gòu),輻照后樣品XRD譜圖的FWHM增大,峰位向高角度偏移(2θ值變大),晶粒尺寸變小,Raman峰強(qiáng)度發(fā)生變化,且輻照后樣品的硬度和楊氏模量均增大,C~(3+)輻照對樣品的結(jié)構(gòu)造成損傷,此外,C~(3+)輻照對YSO樣品在紫外光波段的吸收特性產(chǎn)生影響,而在可見光及近紅外波段則無影響。應(yīng)用不同能量和劑量的C~(3+)和O~(3+)分別輻照YSO和Pr:YSO晶體制備了多個(gè)光波導(dǎo)結(jié)構(gòu)。測試結(jié)果表明離子輻照后的樣品在TE及TM模式下分別形成了不同類型的波導(dǎo)結(jié)構(gòu),且C~(3+)輻照形成的波導(dǎo)結(jié)構(gòu)在可見光波段可支持單模傳輸。O~(3+)輻照形成的波導(dǎo)結(jié)構(gòu)在可見光波段可支持多模傳輸,O~(3+)輻照較C~(3+)輻照對樣品造成的損傷較大。離子輻照后樣品在紫外光波段的吸收明顯增強(qiáng),且吸收率隨輻照劑量的增大而增加。經(jīng)C~(3+)輻照后YSO樣品的硬度和楊氏模量均隨輻照劑量的增大而增加,而經(jīng)O~(3+)輻照后Pr:YSO樣品的硬度和楊氏模量均減小。非金屬離子摻雜ZnO材料在可見光區(qū)域可以有效提高樣品的光吸收,而N離子因其具有與O離子相似的電子結(jié)構(gòu)和離子半徑,低的離子能,易于處理和資源豐富等優(yōu)點(diǎn),常被考慮作為一種有效的摻雜離子。應(yīng)用磁控濺射技術(shù)在藍(lán)寶石(Al_2O_3)襯底上制備了 ZnO納米薄膜,選取其中的一部分樣品進(jìn)行能量為90 keV,劑量為1×1015ions/cm~2的N~+輻照處理,對未輻照和輻照后的樣品分別進(jìn)行100至500 ℃的退火處理,研究結(jié)果表明N~+輻照和增加退火溫度均可提高樣品的結(jié)晶質(zhì)量,離子輻照后樣品的禁帶寬度增大;增大退火溫度,未輻照樣品的透過率降低,輻照后樣品的禁帶寬度減小。通過離子輻照技術(shù)在合適的退火溫度下可以制備高質(zhì)量的ZnO納米薄膜材料。因具有層數(shù)和面積可控、帶隙可在1-2 eV范圍調(diào)控等諸多優(yōu)勢,單原子層或者幾個(gè)原子層厚度的二維過渡金屬硫化物在潤滑劑、催化、能源、光電器件和功能納米復(fù)合材料等眾多領(lǐng)域應(yīng)用廣泛。應(yīng)用能量為600 keV和6.0 MeV,劑量為1 × 1014 ions/cm~2和1 × 1015 ions/cm~2的O離子輻照多層WS_2納米片,研究結(jié)果表明離子輻照后多層WS_2納米片的層數(shù)減少,厚度變薄,高能量的O~(3+)輻照破壞了多層WS_2納米片原有的三角形結(jié)構(gòu)。輻照對納米薄膜樣品產(chǎn)生損傷,光學(xué)禁帶寬度Eg隨著輻照離子能量的增大而增加,隨輻照劑量的增大而減小。因此,通過調(diào)控O離子的輻照條件可以有效調(diào)控多層WS_2納米片的層數(shù)及光學(xué)禁帶寬度。應(yīng)用能量為 600 keV 和 6.0 MeV,劑量為 1×1014 ions/cm~2 和 1×1015 ions/cm~2的O離子輻照多層MoSe_2納米片,研究結(jié)果表明輻照后的樣品的納米片尺寸變大,有聚集疊加生長的趨勢,其形狀不再是完美的三角形結(jié)構(gòu)。高能量高劑量的輻照使納米片厚度降低,低能量高劑量的O~+輻照使樣品的結(jié)晶性更好。離子輻照破壞了多層MoSe_2納米片中層與層之間的范德華力及其電子結(jié)構(gòu),使樣品的透過率增大,改變了多層MoSe_2納米片的禁帶寬度。
[Abstract]:As a kind of important material in surface modification and surface characterization of ion irradiation technology in metal materials, semiconductor industry, chemistry, medicine, magnetic materials, has been widely used in various fields such as physics. The interaction between ions and solids based on effective doped optical waveguide structure and ion irradiation technology can also be used in the semiconductor material. The preparation of "integrated optics" (Integrated Optics) this concept is the Baer laboratory S.E.Miller proposed in 1969, using the method of integrated circuit, the film will be in the form of all optical components are integrated into a small volume of substrate, has the advantages of small volume, high efficiency, stable performance. Easy to use, in the optical information storage, optical fiber sensing technology, material science research and the capacity and distance of the optical communication and other fields has a good application prospect. As optical waveguide The basic structure of integrated optical components, can also carry out optical signal transmission and conversion, so the performance and function of integrated optical components is directly influenced by optical waveguide structure. At present, ion irradiation technology has developed into a mature waveguide preparation method, through the control of the ion energy type, irradiation dose and temperature, etc. has been in a variety of conditions, semiconductor, glass, crystal and polymer materials prepared by ion irradiation in the waveguide structure. In the process of ion energy through electronic and nuclear energy loss in the interaction with the process of material consumed, the structure of substrate material damage and lead to changes in the structure, and the irradiation area of substrate refractive distortion the rate of the materials, and the application value of integrated optical components affected by the structure and optical properties of materials, so the microstructure study of waveguide and optical properties Has the important significance of qualitative change. Unlike solid materials, nano materials excited element, various internal electronic states and material interactions have unique properties in energy, chemical industry, national defense, aerospace, medicine etc. they are widely used. The application of nano materials is more and more widely, to make more researchers the focus will gather in nano materials in harsh radiation environment in the change of its structure and properties and change mechanism. Although ion irradiation will damage the structure of the material, but it can make a surface modification of nano materials, some properties of materials is improved and optimized. The change mechanism of irradiation of nano materials and so on the macroscopic properties, modification of nano materials has important significance on the use of ion irradiation technology in the future better. This paper mainly focuses on the ion irradiation optical crystals (MgAl_2O_4, Y2SiO_5, Pr: and Y_2SiO_5). M thin films (ZnO films, WS_2 multilayer nano film, multilayer nano MoSe_2), the main contents include: the application of ion irradiation technology for preparation of planar optical waveguide structures in optical crystal; lattice damage and optical ion irradiation optical crystal and nano film materials, the mechanical properties change; ion irradiation technology application layer control multilayer films, thickness and optical band gap. This thesis mainly adopts the structure of optical crystal and nano film materials before and after irradiation of theoretical simulation and experimental characterization of combining the mechanical and optical properties of the specific changes include: application of SRIM software to simulate the electronic and nuclear energy damage during ion irradiation, ion range distribution; application of prism coupling test samples before and after ion irradiation in the visible band Dark mode characteristic curve; application of reflection method (RCM) reconstruction of planar optical waveguide structures The refractive index distribution; face coupling method of planar optical waveguide structures in the near field intensity distribution in the visible band, and the transmission loss of back reflection method of planar optical waveguide structures test; application of finite difference beam propagation method (FD-BPM) in the reconstruction of the refractive index of the RCM rate based on the simulation of optical transmission optical waveguide; application of Rutherford backscattering / channeling (RBS/Channeling) damage sample test before and after ion irradiation, element distribution and film thickness; two secondary ion mass spectrometry (SIMS) distribution of ion irradiated waveguide elements; application of X ray diffraction (XRD), Raman scattering, UV (Raman scattering) visible near infrared spectrophotometer (UV-Vis-NIR), optical microscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) structure of the sample before and after ion irradiation test, surface morphology The film thickness, and the number of layers and optical properties change; in addition, the nano indentation technique is used to test the changes in the mechanical properties of samples before and after ion irradiation. The specific studies are as follows: spinel (MgAl_2O_4) belongs to cubic crystal system, corrosion resistant, high temperature resistance, high hardness and bending strength, physical and chemical properties of stability, good UV to infrared transmittance and other excellent properties, is a kind of ideal functional material, is widely used in short wave communication, chemical, electronics, laser field materials. The energy is 6 MeV, at a dose of 1.5 * 1015 ions/cm~2 O~ (3+) irradiation of MgAl_2O_4 single crystal sample preparation of planar optical waveguide structures the results show that ion irradiation. After the formation of a typical "barrier + trap" optical waveguide structure, O~ (3+) MgAl_2O_4 single crystal samples in the irradiation process, caused the lattice damage, irradiation, slightly The sample absorption rate increased after irradiation. The use of different energy (6 MeV (6.0+ 6) MeV) and dose (5 x 1014 ions/cm~2,1 * 1015 ions/cm~2,1.5 * 1015 ions/cm~2 (4 * 1014 + 5 * 1014) ions/cm~2) C~ (3+) MgAl204 Irradiation Preparation of planar optical waveguide structures. The results show that C~ (3+) after irradiation, forming a "barrier + trap" waveguide structure, C~ (3+) transmission of irradiated samples can limit the light well, and the transmission loss is less than O~ (3+) transmission loss of irradiated samples, multi energy dose of C~ (3+) generated during irradiation the lattice damage and color center changes the lattice structure of the sample, increasing the sample absorption in the visible to infrared light. Yttrium silicate single crystal Y_2SiO_5 (YSO) model of laser crystal material as a kind of widely used, with high chemical stability, low thermal expansion coefficient, excellent optical properties and thermal conductivity Has attracted the attention of many scholars. The application of energy for 6.0MeV, at a dose of 1 * 1015ion/cm~2 C~ (3+) Y_2SiO_5 irradiation (YSO) planar optical waveguide structures by crystal. The results show that the C~ (3+) after irradiation to form a "barrier" type optical waveguide structure, XRD spectra of irradiated samples the increase of FWHM, the peak positions of high angle offset (2 theta larger), the grain size and changes in Raman peak intensity, hardness and Young's modulus of the samples increased after irradiation and C~ (3+), the damage caused by radiation on the structure of samples in C~ (3+) irradiation on YSO sample impact in the absorption of ultraviolet light, and there is no effect in the visible light and near infrared band. The application of different energy and dose of C~ (3+) and O~ (3+) were irradiated YSO and Pr:YSO crystals were prepared by a plurality of optical waveguide structures. The test results show that the ion irradiated samples in TE and TM mode respectively. The formation of different types The structure of the waveguide, and the waveguide structure C~ (3+) irradiation can be formed by.O~ support single mode transmission in visible light (3+) irradiation of waveguide structure can support multimode transmission in visible band, O~ (3+) irradiation than C~ (3+) irradiation on the damage caused by large sample ion absorption in the ultraviolet radiation. Band samples significantly enhanced after irradiation, and the absorption rate increases with the increase of irradiation dose increased. The C~ (3+) after irradiation hardness and Young's modulus of YSO samples increased with the increase of irradiation dose increased, while the O~ (3+) after irradiation hardness and Young's modulus of Pr:YSO samples decreased. Non metal ion doping the ZnO material in the visible region can effectively improve the light absorption of the samples, and N ion because of its electronic structure and ionic radius similar to O ion, low ion energy, easy to handle and the advantages of rich resources, is often considered as a kind of effective application of doped ions. Magnetron sputtering on sapphire (Al_2O_3) substrate ZnO nano film was prepared, the samples were part of the energy of 90 keV, at a dose of 1 * 1015ions/cm~2 N~+ irradiation treatment, annealing treatment on non irradiated and irradiated samples were 100 to 500 DEG C, the results of the study show that N~+ irradiation and increased the annealing temperature can improve the crystalline quality of the samples, after ion irradiation the band gaps of the samples increases; increasing the annealing temperature, the transmittance of the unirradiated sample decreased after irradiation. The band gaps of the samples decreased by ion irradiation technology can prepare high quality ZnO nano film materials in suitable annealing temperature. Because of the number of layers and area controllable, band gap in the advantages of 1-2 eV range control, a single atomic layer or two transition metal sulfides several atomic layer thickness in the lubricant, catalysis, energy, light and power devices Can be widely used in many fields of nano composite materials. The application of energy is 600 keV and 6 MeV, the dose of O ion irradiation multilayer nano WS_2 1 * 1014 * 1015 ions/cm~2 and 1 ions/cm~2, the results show that ion irradiation of multilayer WS_2 nanosheets were decreased, thickness, high energy O~ (3+) irradiation destroyed the nano WS_2 multilayer structure. The original triangle produced by irradiation damage on nanoscale thin films, optical band gap of Eg increased with the increase of irradiation of the ion energy, decreases with the increase of irradiation dose. Therefore, effective regulation of multilayer WS_2 nano sheet layers and the optical band gap through the regulation of O ion irradiation conditions. The application of energy was 600 keV and 6 MeV, the dose of O ion irradiation multilayer nano MoSe_2 1 * 1014 * 1015 ions/cm~2 and 1 ions/cm~2, the research results show that the nano size of irradiated samples Change, has gathered the superposition growth trend, its shape is no longer a perfect triangle structure. High dose irradiation of high energy nano film thickness to reduce, O~+ low energy high dose irradiation to better the crystallinity of the samples. The destruction of Vander Ed Ley ion irradiation and electronic structure of MoSe_2 nano multilayer film with middle layer between. The sample transmittance increases, the band gap change multilayer MoSe_2 nano sheet width.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TN25
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳克勤;用重離子束研究金屬缺陷的生成[J];核物理動(dòng)態(tài);1987年04期
2 黃衛(wèi)東,余增亮;低能離子輻照蘇氨酸的初步研究[J];生物物理學(xué)報(bào);1997年02期
3 祖小濤;封向東;雷雨;朱莎;王魯閔;;采用EPR譜和TEM對YSZ單晶輻照損傷的研究[J];強(qiáng)激光與粒子束;2005年12期
4 周麗宏;張崇宏;宋銀;楊義濤;;鉛離子輻照注碳4H-SiC的紅外光譜特性研究[J];原子核物理評論;2006年02期
5 何金玉;;碳離子輻照對甜高梁M_2代幼苗干旱適應(yīng)性的初步研究(英文)[J];IMP & HIRFL Annual Report;2007年00期
6 何金玉;;碳離子輻照對甜高梁M_2代幼苗抗旱性的影響(英文)[J];IMP & HIRFL Annual Report;2007年00期
7 宋銀;張崇宏;楊義濤;李炳生;馬藝準(zhǔn);緱潔;姚存峰;賀德衍;;離子輻照引起Eu摻雜氧化鎂的發(fā)光特性[J];激光與光電子學(xué)進(jìn)展;2011年05期
8 馬明旺;陳西良;楊康;楊小敏;劉丹;朱智勇;;高能鐵離子輻照二氧化硅玻璃產(chǎn)生的缺陷研究[J];核技術(shù);2009年04期
9 劉昌龍,朱智勇,金運(yùn)范,王衍斌,孫友梅,侯明東,王志光,劉杰,陳曉曦,張崇宏;35MeV/uAr離子輻照聚酯膜引起的效應(yīng)研究[J];原子核物理評論;2000年04期
10 趙志明,王志光,A.Benyagoub,M.Toulemonde,F.Levesque,宋銀,金運(yùn)范,孫友梅;高能Pb離子輻照注碳SiO_2的紅外譜研究[J];高能物理與核物理;2005年08期
相關(guān)會(huì)議論文 前10條
1 張崇宏;孫友梅;宋銀;T.Shibayama;魏龍;周春蘭;馬宏驥;聶銳;沈定予;王志光;段敬來;;碳化硅晶體中荷能惰性氣體離子輻照引起缺陷的機(jī)理研究[A];第十二屆全國核物理大會(huì)暨第七屆會(huì)員代表大會(huì)論文摘要集[C];2004年
2 晏世偉;;離子輻照損傷的細(xì)胞響應(yīng):濃度振蕩,隨機(jī)性和Hopf分叉[A];2007年全國核反應(yīng)會(huì)暨生物物理與核物理學(xué)科交叉前沿研討會(huì)論文摘要集[C];2007年
3 唐玉華;朱智勇;金運(yùn)范;劉昌龍;王衍斌;侯明東;王志光;陳曉曦;劉杰;;~(2.1)GeV氪離子輻照聚苯乙烯薄膜的紫外/可見光譜分析[A];第十一屆全國核物理大會(huì)論文集[C];2000年
4 張崇宏;孫友梅;T.Shibayama;宋銀;王志光;金運(yùn)范;趙志明;;碳化硅晶體中重惰性氣體離子輻照引起缺陷的研究[A];第二屆全國反應(yīng)堆物理與核材料學(xué)術(shù)研討會(huì)論文集[C];2005年
5 魏孔芳;王志光;劉純寶;臧航;宋銀;盧子偉;姚存峰;盛彥斌;馬藝準(zhǔn);;金屬多層膜的離子輻照效應(yīng)研究[A];第三屆反應(yīng)堆物理與核材料學(xué)術(shù)研討會(huì)論文集[C];2007年
6 魏孔芳;王志光;劉純寶;臧航;宋銀;盧子偉;姚存峰;盛彥斌;馬藝準(zhǔn);;金屬多層膜的離子輻照效應(yīng)研究[A];第三屆反應(yīng)堆物理與核材料學(xué)術(shù)研討會(huì)論文摘要集[C];2007年
7 王永威;常永勤;姜少寧;龍毅;萬發(fā)榮;;氫離子和氘離子輻照對Fe-V合金微觀組織的影響[A];中國核科學(xué)技術(shù)進(jìn)展報(bào)告(第二卷)——中國核學(xué)會(huì)2011年學(xué)術(shù)年會(huì)論文集第4冊(核材料分卷、同位素分離分卷、核化學(xué)與放射化學(xué)分卷)[C];2011年
8 宋銀;賀德衍;張崇宏;楊義濤;李炳生;馬藝準(zhǔn);緱潔;姚存峰;謝二慶;;離子輻照引起Eu摻雜MgO的發(fā)光特性研究[A];中國光學(xué)學(xué)會(huì)2010年光學(xué)大會(huì)論文集[C];2010年
9 宋玉峰;朱智勇;孫友梅;金運(yùn)范;潘強(qiáng)巖;;高能鐵離子輻照單晶氧化鋁產(chǎn)生的色心研究[A];第一屆中國核技術(shù)及應(yīng)用研究學(xué)術(shù)研討會(huì)摘要文集[C];2006年
10 宋銀;謝二慶;張崇宏;周麗宏;李玉紅;楊義濤;姚存峰;李炳生;馬藝準(zhǔn);緱潔;;Xe~(23+)離子輻照Al_2O_3的光譜特性[A];第五屆北京核學(xué)會(huì)核技術(shù)應(yīng)用學(xué)術(shù)交流會(huì)論文集[C];2008年
相關(guān)博士學(xué)位論文 前5條
1 王潔;碳離子輻照對綠藻光合系統(tǒng)的影響及誘變機(jī)理研究[D];中國科學(xué)院研究生院(近代物理研究所);2016年
2 陳濟(jì)鴻;新型低活化馬氏體鋼的離子輻照損傷研究[D];武漢大學(xué);2014年
3 宋紅蓮;離子輻照光波導(dǎo)及二維材料的結(jié)構(gòu)調(diào)控研究[D];山東大學(xué);2017年
4 張力;離子輻照對材料中擴(kuò)散行為的長程影響及其機(jī)制研究[D];哈爾濱工業(yè)大學(xué);2011年
5 劉濤;離子輻照光學(xué)材料制備可見光與紅外波導(dǎo)的特性研究[D];山東大學(xué);2014年
相關(guān)碩士學(xué)位論文 前4條
1 張曼莉;氦離子輻照對Al_2O_3-TiO_2復(fù)合陶瓷涂層性能的影響[D];南華大學(xué);2015年
2 胡坡;重離子輻照In_xGa_(1-x)N(0.32≤x≤1.0)薄膜的Raman光譜研究[D];蘭州大學(xué);2016年
3 禹博;鋯基合金低能離子輻照效應(yīng)研究[D];哈爾濱工業(yè)大學(xué);2012年
4 張恒慶;載能離子輻照鋼鐵材料硬化效應(yīng)研究[D];中國科學(xué)院研究生院(近代物理研究所);2014年
,本文編號:1447946
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1447946.html