ISAR高分辨成像和參數(shù)估計算法研究
本文關鍵詞:ISAR高分辨成像和參數(shù)估計算法研究 出處:《西安電子科技大學》2016年博士論文 論文類型:學位論文
更多相關文章: 逆合成孔徑雷達 稀疏信號處理 稀疏孔徑 方位定標 機動目標
【摘要】:隨著國民經(jīng)濟的提升和現(xiàn)代戰(zhàn)爭形式的轉變,雷達成像技術憑借其遠距離、全天時、全天候高分辨成像的獨特優(yōu)勢,在民用和國防遙感領域發(fā)揮著不可替代的作用。作為對空間、空中及海洋觀測最重要的手段之一,逆合成孔徑雷達(Inverse Synthetic Aperture Radar,ISAR)成像是非合作目標識別的關鍵技術。為了滿足日益增加的應用需求,ISAR正朝著多功能、多維度和協(xié)同網(wǎng)絡等方向發(fā)展。工作模式和數(shù)據(jù)獲取方式的多樣化,以及目標運動的復雜性,使得現(xiàn)有的ISAR成像體制面臨著高分辨成像和目標參數(shù)提取等挑戰(zhàn)。在國家“973”計劃課題等多個項目支持下,本文針對現(xiàn)有ISAR成像中存在的短孔徑低分辨成像、非相干的稀疏孔徑以及平穩(wěn)或機動目標定標等問題開展研究,旨在增強ISAR圖像分辨率和探討穩(wěn)定的參數(shù)估計方法,以提高雷達自動目標識別能力。研究內容主要包括以下幾方面:(1)ISAR短孔徑數(shù)據(jù)的稀疏高分辨成像由于雷達的多模式工作狀態(tài)或目標的機動性,短孔徑數(shù)據(jù)在ISAR成像中普遍存在。盡管成像方法簡單高效,但同時限制了圖像分辨率,影響目標識別性能。在分析ISAR回波模型和典型運動補償算法的基礎上,本文第二章基于壓縮感知理論介紹了稀疏ISAR信號的重構方法。該方法重點從統(tǒng)計的角度提出了一種基于數(shù)據(jù)的稀疏約束參數(shù)估計方法。通過推導重構高分辨圖像的正則化問題,稀疏約束參數(shù)可由最大似然估計得到解析形式。其中,噪聲方差由粗圖像中大量的噪聲單元估計,權值由預處理的降噪圖像進行初始化。利用優(yōu)化求解的高分辨圖像,再對稀疏約束參數(shù)進行更新并重新估計圖像,多次循環(huán)提升算法性能。結果表明,迭代估計的稀疏約束參數(shù)能在重構高分辨圖像過程中,較好地權衡信號逼真度和稀疏性。(2)稀疏孔徑的相干化處理和高分辨成像除了雷達多樣化的工作模式外,外界或系統(tǒng)的干擾也會造成數(shù)據(jù)的缺損,形成稀疏孔徑。對于塊狀稀疏分布的子孔徑,經(jīng)過獨立的包絡對齊和自聚焦處理后,殘余的線性相位和復幅度將在觀測孔徑之間存在差異。針對這種稀疏孔徑之間的非相干性,本文第三章提出了一種相干化處理方法。將子孔徑的包絡按質心對齊后,對各子圖像中的特顯點單元建立全極點模型,并由求根MUSIC算法估計極點,計算子孔徑間的多普勒偏移。以其中一個子孔徑作為基準校正線性相位后,通過最小二乘(Least Square,LS)方法求解各子孔徑的模型系數(shù)。由估計的極點和系數(shù),將頻偏校準后的子孔徑分別進行前向和后向外推至整個孔徑長度。再利用LS估計復幅度偏差并進行校正。在相干化處理后,構造部分FFT基作為觀測矩陣,通過稀疏信號處理的方法對缺失孔徑進行恢復。從實驗結果可看出,經(jīng)過相干化處理和空缺孔徑重構后,成像效果得到了明顯提升。(3)勻速轉動目標的定標方法目標識別除了需要高分辨圖像之外,還需要精確的目標尺寸參數(shù)。因此,本文的第四章和第五章針對勻速轉動目標提出了兩種不同的定標方法。第四章先分析了平動補償過程引入的殘余平動相位對不同定標方法的潛在影響。重點提出了一種利用散射點調頻率相消的有效轉動速度(Effective Rotaional Velocity,ERV)估計方法,該方法幾乎不受殘余平動的影響。通過選取散射點單元,并將其時域信號看作時變自回歸模型。對短時數(shù)據(jù)段估計瞬時極點后,滑窗獲得整個孔徑的多普勒歷程。根據(jù)關系式,ERV可以從不同距離單元的散射點調頻率解算。轉動相位補償后,再進行自聚焦處理提高圖像聚焦度。由于該方法依賴于提取的散射點質量,在信噪比(Signal-to-noise ratio,SNR)較低時估計性能會下降。為了提高定標算法的穩(wěn)定性,第五章針對勻速轉動目標提出了基于圖像整體性能的ERV估計方法。該方法考慮殘余平動的影響,將其作為參數(shù)聯(lián)合ERV估計。通過迭代補償二次相位誤差,直到補償后的圖像幅度平方銳化度(Intensity-squared Sharpness,ISS)達到最大值,同時獲得聚焦圖像和ERV估計值。在此基礎上,再對聚焦圖像進行自聚焦處理,進一步聚焦圖像。其中,ISS最大化問題是典型的非線性最小二乘問題,利用高斯牛頓的方法可實現(xiàn)高效求解。與多種方法的對比結果說明,這種從圖像性能角度估計ERV的方法雖然效率中等,但具有較高的精度和魯棒性。(4)非勻速轉動目標的定標和高分辨成像方法由于勻加速轉動引起的距離-方位二維耦合,增加了轉動參數(shù)估計的難度。針對此類目標,本文第六章首先提出了一種基于匹配傅里葉變換(Matched Fourier Transform,MFT)的圖像ISS最大化的定標方法。該方法將RD成像中FFT線性變換替換為參數(shù)化的MFT變換。通過對二維耦合相位迭代補償,使得MFT圖像的ISS最大,估計得到MFT調頻率和ERV參數(shù)。該定標方法能在信噪比較低的條件下保持較好的估計性能。但強噪聲或低分辨率仍影響目標識別,因此,利用部分MFT基和稀疏信號處理的方法進一步完成了高分辨圖像的重構。
[Abstract]:With the promotion of national economy and the transformation of modern warfare, radar imaging technology with its unique advantages of long distance, all day long, all-weather, high resolution imaging, plays an irreplaceable role in civilian and military fields. As for space remote sensing, air and ocean observation is one of the most important means of inverse synthetic aperture radar (Inverse Synthetic Aperture Radar, ISAR) imaging is the key technology of non cooperative target recognition. In order to meet the application demand increasing, ISAR is moving towards multi function, multi dimension and collaborative network development. The diversification of working mode and data acquisition, and the complexity of target movement, the ISAR imaging system of existing face a high resolution imaging and target extraction and other challenges. In the national "973" project and other projects supported by the existing short aperture ISAR imaging in low Sparse aperture resolution imaging, non coherent and stable or maneuvering target calibration and so on, in order to enhance the resolution of ISAR image parameters and discuss the stability estimation method to improve radar automatic target recognition. The main research contents include the following aspects: (1) ISAR sparse short aperture data of high resolution imaging radar due to mobility the multi mode state of target, short aperture data exists in ISAR imaging. Although the imaging method is simple and efficient, but also limits the resolution of the image, affect the performance of target recognition. Based on analyzing the ISAR echo model and typical motion compensation algorithm, the second chapter introduces the theory of compressed sensing sparse signal reconstruction method ISAR based on this method. The key from a statistical point of view presents a method for estimating sparse constraint parameters based on data. By deducing the reconstruction of high resolution map As the regularization problem, we obtain the closed form estimation by maximum likelihood parameter sparsity constraint. The noise variance from coarse image noise estimation unit is large, denoising image pre-processing by weight initialization. Using high resolution image optimization, then the parameters are updated about sparse beam and re estimation of the image, many times to raise the performance of the proposed algorithm. The results show that the sparse constraint parameter iterative estimation to high resolution in image reconstruction process, better balanced signal fidelity and sparsity. (2) coherent processing and high resolution imaging radar in addition to the work mode of diversification outside the sparse aperture, outside interference or system will defect data by forming a sparse aperture. For the block sparse sub aperture, the envelope alignment independent and self focusing treatment, residual linear phase and amplitude in complex observation aperture There are differences between. For the non coherence between the sparse aperture, the third chapter of this paper presents a coherent processing method. The envelope sub aperture according to centroid alignment after the establishment of the all pole model of each sub image in the display unit, and by the root MUSIC algorithm to estimate the pole, calculation of Doppler shift between the sub apertures in one of the sub aperture. As the benchmark calibration of linear phase, by least squares (Least Square LS) method for solving the model coefficients of each subaperture. By pole and coefficient estimation, frequency offset will be calibrated separately to the sub aperture before and after outwards to the whole aperture length. Then using LS to estimate complex the amplitude deviation is corrected. In coherent processing, construction part of FFT base as the observation matrix, the missing aperture can be restored by method of sparse signal processing. Can be seen from the experimental results, the coherent processing and Vacant aperture reconstruction imaging effect is improved obviously. (3) the uniform rotation target calibration method for target recognition in addition to the high resolution image, but also need to target size parameters accurately. Therefore, the fourth chapter and the fifth chapter according to the uniform rotation target presents two different calibration methods. The fourth chapter the first analysis of the potential impact of different calibration methods of residual translational phase motion compensation process introduced. Put forward an effective rotation speed using scattering point frequency cancellation (Effective Rotaional, Velocity, ERV) estimation method, this method is almost not affected by the residual translation. By selecting scatter point unit, and the the time domain signal as a time-varying autoregressive model. To estimate the short-term data segment instantaneous pole, Doppler won the whole course of sliding window aperture. According to the relationship, ERV from different distance unit Scattering point adjustable frequency calculation. The rotational phase compensation, then the autofocus processing to improve image focusing degree. Because of the scattering method depends on the quality of extracting, the signal-to-noise ratio (Signal-to-noise ratio SNR) low estimation performance will decrease. In order to improve the stability of the calibration algorithm, the fifth chapter for the uniform the overall performance of image rotation target ERV estimation method based on this method. Considering the influence of residual motion, the parameters of joint ERV estimation. Through iterative compensation two phase error, until after the compensation of the image sharpening square amplitude (Intensity-squared Sharpness, ISS) reached the maximum value at the same time, to obtain a focused image and ERV estimation. On this basis, the focused image autofocus processing, further focus image. Among them, ISS maximization problem is a typical nonlinear least squares problem, using Gauss Newton's method can To achieve efficient solution. Compared with other methods. The results show that the performance of the image from the angle estimation method of ERV although the efficiency of medium, but has high precision and robustness. (4) calibration of non uniform rotation of targets and high resolution imaging method with uniform acceleration caused by rotation of the distance and azimuth of two-dimensional coupled, increased the rotation parameter estimation difficult. For this goal, the sixth chapter puts forward a matching based on Fourier transform (Matched Fourier Transform, MFT) the calibration method of ISS image maximum. This method combines MFT transform RD imaging FFT linear transformation to replace parameters. Based on two-dimensional coupled iterative phase compensation the MFT image, the maximum ISS, the estimated MFT modulation frequency and ERV parameters. The calibration method can maintain a good estimation performance in the low SNR condition. But the strong noise or low resolution still affect the target Therefore, the reconstruction of high resolution images is further completed by using the method of partial MFT based and sparse signal processing.
【學位授予單位】:西安電子科技大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TN957.52
【相似文獻】
相關期刊論文 前10條
1 朱岱寅,朱兆達;IDENTIFYING THE NUMBER OF AIRCRAFT IN FORMATION FLIGHT USING ISAR TECHNIQUE[J];Chinese Journal of Aeronautics;1999年03期
2 王洋,陳建文,劉中;導彈目標ISAR成像仿真分析[J];現(xiàn)代雷達;2003年10期
3 范春彥,李曉曼,付紅衛(wèi),張善文;ISAR成像的處理與分類方法[J];電光與控制;2003年02期
4 何媛,高梅國,付佗;Modified Approach to PGA Phase Averaging for ISAR Autofocus[J];Journal of Beijing Institute of Technology(English Edition);2003年S1期
5 王勇,成萍,姜義成;等變加速旋轉目標ISAR成像距離-瞬時多普勒法[J];現(xiàn)代雷達;2005年05期
6 王洋,陳建文,劉中,劉愛芳;多運動目標ISAR成像方法研究[J];宇航學報;2005年04期
7 王立冬;胡衛(wèi)東;郁文賢;;聯(lián)合時頻技術用于ISAR像綜述[J];系統(tǒng)工程與電子技術;2005年12期
8 ;A COMPARISON OF SOME ELECTRONIC COUNTERMEASURES ON INVERSE SYNTHETIC APERTURE RADAR (ISAR)[J];Journal of Electronics;2006年01期
9 ;NEW RANGE ALIGNMENT ALGORITHM FOR ISAR BASED ON HIGH ORDER MOMENT[J];Journal of Electronics(China);2007年04期
10 劉春泉;田中成;周青松;;對ISAR的混沌噪聲調頻干擾[J];電子信息對抗技術;2008年03期
相關會議論文 前10條
1 劉紅婭;賈鑫;;對ISAR系統(tǒng)有效干擾分析[A];全國第三屆信號和智能信息處理與應用學術交流會?痆C];2009年
2 賀思三;趙會寧;周劍雄;付強;;基于相關距離像序列的ISAR圖像橫向定標[A];第十四屆全國信號處理學術年會(CCSP-2009)論文集[C];2009年
3 項艷;柏又青;馮有前;朱豐;張群;;壓縮感知在ISAR數(shù)據(jù)傳輸中的應用[A];第八屆全國信號與信息處理聯(lián)合學術會議論文集[C];2009年
4 張凱;杜小勇;王壯;;壓縮感知在ISAR成像中的應用[A];2011年通信與信息技術新進展——第八屆中國通信學會學術年會論文集[C];2011年
5 張群;張濤;張守宏;;一種ISAR成像運動補償新方法[A];第九屆全國信號處理學術年會(CCSP-99)論文集[C];1999年
6 劉毅鵬;王軍鋒;張振國;劉興釗;;一種改進的ISAR最小熵相位校正方案[A];第十二屆全國信號處理學術年會(CCSP-2005)論文集[C];2005年
7 余渝生;朱岱寅;;ISAR大轉角下全局最小熵距離對準算法的改進[A];2008通信理論與技術新進展——第十三屆全國青年通信學術會議論文集(上)[C];2008年
8 江舸;;ISAR圖像欺騙干擾技術研究[A];中國工程物理研究院科技年報(2010年版)[C];2011年
9 李寧;汪玲;;一種基于有效轉動角速度估計的ISAR圖像方位向定標方法[A];2011年全國通信安全學術會議論文集[C];2011年
10 李源;;影響ISAR成像質量的脈沖參數(shù)分析[A];中國雷達行業(yè)協(xié)會航空電子分會暨四川省電子學會航空航天專委會學術交流會論文集[C];2005年
相關重要報紙文章 前1條
1 玉 榮;ISAR模型核心:“好公司”“好股票”[N];證券日報;2005年
相關博士學位論文 前10條
1 潘小義;基于目標散射及微動特性調制的ISAR干擾方法研究[D];國防科學技術大學;2014年
2 俞翔;ISAR運動補償和成像新方法的研究[D];南京航空航天大學;2013年
3 王超;基于信號處理新方法的機動目標ISAR成像算法研究[D];哈爾濱工業(yè)大學;2015年
4 周芳;高分辨SAR/ISAR成像信號補償新技術研究[D];西安電子科技大學;2014年
5 徐剛;高分辨雷達成像稀疏信號處理技術研究[D];西安電子科技大學;2015年
6 鄭紀彬;基于運動參數(shù)非搜索估計的ISAR成像技術研究[D];西安電子科技大學;2015年
7 陳倩倩;高分辨ISAR成像及定標技術研究[D];西安電子科技大學;2015年
8 陳津;空間目標ISAR成像方法與特征分析研究[D];北京理工大學;2016年
9 肖達;浮空器載逆合成孔徑雷達飛機目標成像技術研究[D];哈爾濱工業(yè)大學;2016年
10 盛佳戀;ISAR高分辨成像和參數(shù)估計算法研究[D];西安電子科技大學;2016年
相關碩士學位論文 前10條
1 師君;高速、多目標ISAR仿真及成像研究[D];電子科技大學;2005年
2 謝昭;ISAR與AIS航跡融合及基于ISAR圖像的船目標長度估計方法研究[D];哈爾濱工業(yè)大學;2015年
3 康健;非合作目標ISAR成像方法研究[D];哈爾濱工業(yè)大學;2015年
4 張穎寧;多基站ISAR成像融合算法研究[D];哈爾濱工業(yè)大學;2015年
5 唐京京;基于混合模式的SAR/ISAR成像技術研究[D];哈爾濱工業(yè)大學;2015年
6 鮑琦;典型ISAR成像方法仿真研究[D];電子科技大學;2014年
7 林冬;基于壓縮感知的雙站ISAR成像研究[D];電子科技大學;2014年
8 楊云川;基于ISAR圖像序列的目標三維重構[D];哈爾濱工業(yè)大學;2014年
9 呂杰勤;基于壓縮感知的ISAR成像算法研究[D];哈爾濱工業(yè)大學;2014年
10 張雙輝;低信噪比下的ISAR成像技術研究[D];國防科學技術大學;2013年
,本文編號:1413928
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1413928.html