仿人雙足機(jī)器人多地形步態(tài)規(guī)劃和穩(wěn)定控制方法研究
本文關(guān)鍵詞:仿人雙足機(jī)器人多地形步態(tài)規(guī)劃和穩(wěn)定控制方法研究 出處:《中國(guó)科學(xué)技術(shù)大學(xué)》2016年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 仿人雙足機(jī)器人 運(yùn)動(dòng)學(xué) 動(dòng)力學(xué) 三質(zhì)心模型 多地形步態(tài)規(guī)劃 穩(wěn)定控制
【摘要】:仿人雙足機(jī)器人具有人類的形狀并能像人一樣活動(dòng),能在人所處的現(xiàn)實(shí)環(huán)境中工作,并且能夠使用人所用的工具,有關(guān)它的研究和發(fā)展代表了機(jī)器人研究的頂尖水平。它集多學(xué)科交叉應(yīng)用,代表了一個(gè)國(guó)家在機(jī)器人領(lǐng)域的最高成就。穩(wěn)定步行是仿人雙足機(jī)器人在多任務(wù)地形的環(huán)境中作業(yè)的基礎(chǔ),也是仿人機(jī)器人研究的難點(diǎn)和熱點(diǎn)。本文以美國(guó)國(guó)防部舉辦的機(jī)器人挑戰(zhàn)賽為背景,在總結(jié)國(guó)內(nèi)外研究成果的基礎(chǔ)上,著重圍繞仿人機(jī)器人多種地形的步態(tài)規(guī)劃和穩(wěn)定控制方法展開研究。本文的主要研究?jī)?nèi)容和創(chuàng)新點(diǎn)在如下幾個(gè)方面:1.基于三質(zhì)心模型的髖關(guān)節(jié)高度和姿態(tài)補(bǔ)償步態(tài)生成方法:目前仿人機(jī)器人所實(shí)現(xiàn)的步行方式與人類自然步態(tài)相比,在步態(tài)平滑自然性、單位移動(dòng)距離能耗以及步行頻率和速度方面具有較大差距。以人體為參照,利用Vicon Nexus運(yùn)動(dòng)捕捉系統(tǒng)搭建人體自然步行運(yùn)動(dòng)研究平臺(tái),通過捕捉人體各關(guān)節(jié)運(yùn)動(dòng)軌跡,提取人類行走的特征數(shù)據(jù),提出了基于三質(zhì)心模型的髖關(guān)節(jié)高度和姿態(tài)補(bǔ)償?shù)牟綉B(tài)生成方法,該方法可以有效解決單質(zhì)心模型不精確的問題,并通過地毯和柏油路步行實(shí)驗(yàn)證明了該方法的有效性和穩(wěn)健性。2.仿人機(jī)器人連續(xù)障礙物跨越方法:首先提出仿人機(jī)器人的障礙物連續(xù)跨越問題,定義了兩種障礙物連續(xù)跨越類型—稀疏障礙物跨越和緊密障礙物跨越;然后提出了連續(xù)障礙物跨越的可行性分析方法,使用腿軌跡規(guī)劃調(diào)整與上半身質(zhì)心運(yùn)動(dòng)軌跡補(bǔ)償?shù)姆椒ㄐ拚罱K全身運(yùn)動(dòng)軌跡;最后,通過OpenHRP仿真平臺(tái)和XT實(shí)驗(yàn)平臺(tái)分別開展兩種障礙物連續(xù)跨越的實(shí)驗(yàn),驗(yàn)證了該方法的有效性和可行性。3.仿人機(jī)器人通用斜面步行模式生成方法:提出了一種考慮仿人機(jī)器人腰部姿態(tài)和低落地沖擊的斜面步行模式生成方法—不對(duì)稱倒立擺斜面步行模式生成方法。首先提出了基于虛擬地面方法的機(jī)器人單質(zhì)心模型的二維和三維運(yùn)動(dòng)方程,獲得了斜面連續(xù)直觀的ZMP方程。然后分析了腰部姿態(tài)對(duì)斜面行走的影響,提出并使用不對(duì)稱倒立擺模型實(shí)現(xiàn)仿人機(jī)器人斜面穩(wěn)定動(dòng)態(tài)行走,該方法可以有效解決落地沖擊問題。最后使用OpenHRP模擬仿真實(shí)驗(yàn)和XT機(jī)器人平臺(tái)斜面動(dòng)態(tài)行走實(shí)驗(yàn)驗(yàn)證了上述新方法的有效性和可行性。4.仿人機(jī)器人兩級(jí)穩(wěn)定步行控制器:設(shè)計(jì)的穩(wěn)定器由兩級(jí)穩(wěn)定器組成,前級(jí)穩(wěn)定器包含髖關(guān)節(jié)力矩補(bǔ)償器、落地控制器和ZMP補(bǔ)償控制器,其主要作用是令機(jī)器人當(dāng)前ZMP向目標(biāo)ZMP移動(dòng),減小這兩點(diǎn)之間的距離;后級(jí)穩(wěn)定器包含上半身軀體控制和落地位置修正控制器:其主要作用是當(dāng)在機(jī)器人目標(biāo)ZMP和當(dāng)前ZMP點(diǎn)幾乎重合的情況下仍有跌倒趨勢(shì)時(shí)(上半身傾斜過大),通過突發(fā)式的調(diào)整上半身加速度重新規(guī)劃目標(biāo)ZMP以恢復(fù)機(jī)器人姿態(tài)并修正擺動(dòng)腿的著地位置。兩級(jí)穩(wěn)定步行控制器保證了仿人機(jī)器人在多種地面的穩(wěn)定步行。
[Abstract]:Humanoid biped robot has human shape and human like to play, can work in the real environment, and can use the tool to use, research and development about it represents the top level of the robot research. It sets the interdisciplinary, representing the highest achievement of a country in the field of robotics. Walking stability is the foundation of humanoid biped robot operating in multi task terrain environment, and is also a difficult and hot research of humanoid robot. The robot based on the challenges the U.S. Department of defense held the tournament as the background, based on summarizing the domestic and foreign research results, focusing on the humanoid robot variety of terrain the gait planning and stability control method is researched in this paper. The main research contents and innovations in the following aspects: 1. based on the hip height and gait generation three centroid attitude compensation model Method: the humanoid robot the way of walking and human natural gait, gait in smooth nature, a wide gap between the unit energy consumption and the moving distance of walking speed and frequency. To the human body as the reference, capture system set up human natural walking motion research platform using Vicon Nexus movement, through the capture of human joint motion trajectory the characteristics of human walking, data extraction, proposed the gait generation method of hip joint height and attitude compensation three centroid based on model, the method can effectively solve the problem of inaccurate elemental heart model, and through the carpet and asphalt road walking experiments demonstrate the effectiveness and robustness of the.2. humanoid robot the method of continuous obstacle crossing methods: firstly, the obstacles of humanoid robot continuous crossing problem, defines two types of sparse obstacles straight across the obstacle crossing The more closely and obstacle crossing; and then put forward the feasibility analysis of continuous obstacle crossing method, method of using leg trajectory planning and adjustment of the upper body centroid trajectory correction of the final compensation body movement trajectory; finally, through OpenHRP simulation platform and XT experimental platform were carried out two kinds of obstacle crossing continuous experiments validate the method the validity and feasibility of the.3. humanoid robot walking pattern generation method: general slope presents a slope considering the waist of humanoid robot posture and low landing impact the walking pattern generation method of asymmetric inverted pendulum inclined walking pattern generation method is proposed. Firstly, equation of two-dimensional robot elemental heart model and 3D virtual ground method based on motion, ZMP equation was obtained. Then the analysis of inclined continuous visual effects on the waist posture cant walk, put forward and used Model of humanoid robot walking stable slope dynamic asymmetric inverted pendulum, the method can effectively solve the problem of landing impact simulation experiment. Finally, using OpenHRP and XT robot platform slope dynamic walking experiments show the new method is effective and feasible.4. humanoid robot walking stability controller design: grade two from grade two stabilizer stabilizer before the class, including stabilizer hip joint torque compensator, landing controller and ZMP controller, its main function is to make the current ZMP mobile robot to the target ZMP, which reduces the distance between two points; after class contains the upper body stabilizer control and landing position correction controller: its main function is when the robot target ZMP and current ZMP almost the same situation still fall trend (upper body incline too much, through the adjustment of the burst mode) and the upper part of the body The target ZMP is reprogrammed to restore the robot's posture and correct the landing position of the swinging leg. The two level stable walking controller ensures the stable walking of the humanoid robot on various ground.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP242
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 馮嘉禮;臧若蘭;劉永昌;;雙足機(jī)器人穩(wěn)定性控制的定性映射描述[J];廣西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年04期
2 嚴(yán)冰;李曉翠;;基于雙足機(jī)器人的設(shè)計(jì)實(shí)現(xiàn)以及相關(guān)改進(jìn)[J];科協(xié)論壇(下半月);2009年05期
3 胡金東;劉國(guó)棟;;雙足機(jī)器人步行模式的在線全身修正[J];計(jì)算機(jī)應(yīng)用;2011年01期
4 ;美國(guó)雙足機(jī)器人創(chuàng)行走速度紀(jì)錄[J];機(jī)器人技術(shù)與應(yīng)用;2011年05期
5 閆耀中;程震;劉國(guó)棟;陳南而;陳昱含;張心豪;;復(fù)雜路況下雙足機(jī)器人穩(wěn)定行走的設(shè)計(jì)與研究[J];電腦知識(shí)與技術(shù);2013年16期
6 劉治,李春文;基于模糊神經(jīng)網(wǎng)絡(luò)的5連桿雙足機(jī)器人混雜控制(英文)[J];控制理論與應(yīng)用;2002年03期
7 周云龍,項(xiàng)龍江,徐心和;雙足機(jī)器人的滑模控制[J];東北大學(xué)學(xué)報(bào);2003年09期
8 周云龍,郝麗娜,徐心和;快速運(yùn)動(dòng)過程中雙足機(jī)器人腳對(duì)地沖擊的利用[J];計(jì)算機(jī)工程與應(yīng)用;2003年24期
9 崔巍,強(qiáng)文義,陳興林;雙足機(jī)器人實(shí)時(shí)障礙檢測(cè)視覺系統(tǒng)[J];控制與決策;2004年01期
10 郝文瑞;劉暢;;高自由度雙足機(jī)器人數(shù)學(xué)模型及步行控制研究[J];力學(xué)與實(shí)踐;2006年06期
相關(guān)會(huì)議論文 前10條
1 周彥俊;談?dòng)⒆?許映秋;;雙足機(jī)器人全向快速行走研究[A];2009年中國(guó)智能自動(dòng)化會(huì)議論文集(第二分冊(cè))[C];2009年
2 湯哲;孫增圻;;雙足機(jī)器人的軌跡生成[A];馬斯特杯2003年中國(guó)機(jī)器人大賽及研討會(huì)論文集[C];2003年
3 湯超;王志良;郝文瑞;劉濤;趙積春;;十七自由度雙足機(jī)器人的步行穩(wěn)定性研究[A];全國(guó)煉鋼連鑄過程自動(dòng)化技術(shù)交流會(huì)論文集[C];2006年
4 毛勇;王家^,
本文編號(hào):1399941
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1399941.html