基于逐次逼近結構的高速低功耗模數(shù)轉換器研究
本文關鍵詞:基于逐次逼近結構的高速低功耗模數(shù)轉換器研究 出處:《東南大學》2017年博士論文 論文類型:學位論文
更多相關文章: 模數(shù)轉換器 逐次逼近 數(shù)模轉換器 電容陣列 比較器 邏輯控制 冗余補償 電容失配校正 失調(diào)校正 雙電容陣列
【摘要】:隨著無線通信、便攜式測試儀器等方面的快速發(fā)展,要求模數(shù)轉換器(ADC)的速度越來越高、功耗越來越低。逐次逼近型(SAR)ADC擁有固有的結構簡單、面積小、功耗低等特性,工藝特征尺寸的不斷降低使得SAR ADC具有了實現(xiàn)高速轉換的可能性,而移動通信、物聯(lián)網(wǎng)、消費電子的飛速發(fā)展,對高速低功耗ADC也提出了很大的需求。所以研究以逐次逼近結構為基礎的高速低功耗ADC對高速低功耗的應用領域具有非常重要的意義。本課題對單核SAR ADC的設計進行了深入的研究,對進一步降低SAR ADC的功耗和提高SAR ADC轉換速度的關鍵技術進行了探討。本文研究的主要內(nèi)容如下:1、本文對SAR ADC中低功耗DAC開關電容陣列進行了深入研究,提出了一種低功耗的基于Vcm的分離電容陣列結構。該結構通過將最高位電容分離為1組二進制權重的電容陣列,以及采用終端匹配電容與Vcm相結合產(chǎn)生最低位量化所需的參考電壓的技術,減少了 DAC電容陣列所需的單位電容個數(shù)和平均充放電功耗,提高了 DAC的速度。和傳統(tǒng)的結構相比,基于Vcm的分離電容陣列結構所需的單位電容個數(shù)減少了 75%,功耗降低了 93.7%,建立速度提高了 25%,同時還使得DAC輸出共模電平基本保持不變,減小了比較器輸入端的動態(tài)失調(diào)。采用所提出的基于Vcm的分離電容陣列結構,在90nm CMOS工藝下設計了 10位SAR ADC,并對其中的邏輯控制電路模塊進行了優(yōu)化設計,縮短了邏輯控制電路的延遲,提高了 SAR ADC的轉換速度。仿真結果表明,該ADC采樣速率可達150MS/s,有效位數(shù)為9.9位,功耗為2.2mW。2、為了進一步提高SAR ADC的轉換速度,本文對DAC模塊的速度優(yōu)化技術進行了研究。分析和討論了采用冗余補償技術縮短DAC建立時間的方法,提出了一種基于二進制冗余補償及分離電容技術的分段結構DAC。通過二進制冗余補償技術,降低了 DAC建立精度的需求,縮短了 DAC的建立時間;通過分離電容技術減小了 DAC建立時間常數(shù),提高了 DAC的建立速度。在12位SAR ADC中,與傳統(tǒng)分段結構DAC相比,提出的DAC的總的建立時間減少了 55%,速度提高了 1倍。基于提出的高速DAC結構,在0.18μm CMOS工藝下實現(xiàn)了一款12位高速SAR ADC。測試結果表明,該ADC的最高轉換速率可達 100MS/s,SNDR 為 59dB,功耗為 6.2mW。3、針對SAR ADC中DAC電容陣列的電容失配導致的非線性問題,本文研究了 DAC電容陣列中電容失配的校正技術,提出了一種基于低位電容陣列復用的數(shù)字域自校正技術。該技術通過復用低位段電容陣列作為校正DAC,在ADC開始正常轉換之前,對高位段電容陣列電容從高到低逐位的進行失配誤差檢測和量化,并將誤差碼存儲起來。正常轉換開始后,將輸出的原始碼與誤差碼求和獲得最終的輸出。為了解決失配誤差估計過程中所需要的比較器的失調(diào)電壓校正,本文對在兩級動態(tài)比較器的第一級和第二級分別引入額外的負載不平衡電容補償失調(diào)電壓的方法進行了對比分析,發(fā)現(xiàn)在第一級實現(xiàn)失調(diào)電壓補償?shù)姆椒ǜ袃?yōu)勢。利用這一分析結果,提出了一種基于負載電容補償?shù)氖д{(diào)校正電路,使得比較器的失調(diào)電壓減小到1LSB以內(nèi),滿足了系統(tǒng)的精度要求。基于提出的數(shù)字域自校正技術設計了一款12位SARADC,并在40nm CMOS工藝下進行了電路級仿真。仿真結果表明,提出的數(shù)字域自校正技術有效的減小了電容失配對SAR ADC性能的影響。4、本文對低功耗的雙電容陣列DAC進行了研究,提出了改進型雙電容陣列DAC。與傳統(tǒng)結構相比,改進后的雙電容陣列DAC在功耗和面積上分別減少了 99.3%和71.9%。本文還對兩級動態(tài)比較器結構進行了研究,提出了改進的兩級動態(tài)比較器結構,通過增加鎖存器作為第一級的負載,提高比較器的增益,從而進一步提高比較器的速度。
[Abstract]:With the rapid development of wireless communication, portable instrument and other aspects of the requirements of analog-to-digital converter (ADC) has become more and more high, more and more low power consumption. The successive approximation (SAR) ADC has inherent structure simple, small size, low power consumption characteristics, to reduce the feature size of the SAR ADC has the possibility of achieving high speed conversion, and mobile communications, networking, rapid development of consumer electronics, a great demand for high speed and low power ADC is proposed. So the research to the successive approximation applications of high speed low power ADC structure based on high speed and low power consumption has very important significance. The design of the single core SAR ADC this topic conducted in-depth research, to further reduce the power consumption of SAR ADC and discusses the key technology to improve the SAR ADC conversion rate. The main contents of this paper are as follows: 1, the SAR ADC low power DAC Close the capacitor array is studied, proposes a low power isolation capacitor array structure based on Vcm. The structure by high capacitance capacitor array is separated into 1 groups of binary weights, and the use of terminal matching capacitor combined with Vcm to generate the reference voltage required for quantification of low technology, reduced by DAC capacitor array required unit capacitor number and average charge and discharge power, improve the speed of DAC. Compared with the traditional structure, the number of unit capacitors separating capacitor array structure of Vcm based on the desired reduced by 75%, power consumption is reduced by 93.7%, a rate increased by 25%, while also making the DAC output common mode level of basic remain unchanged, reduce the input of the dynamic comparator disorders. By separating the capacitor array structure based on Vcm proposed by 90nm CMOS in the process design of 10 SAR ADC, and the control logic The circuit module is optimized, the logic control circuit to shorten the delay, improve the SAR ADC conversion speed. The simulation results show that the ADC sampling rate up to 150MS/s, 9.9 effective digits, power consumption is 2.2mW.2, in order to further improve the SAR ADC conversion speed, the speed of DAC module on the optimization technology study. Analyzed and discussed using redundancy compensation technology to shorten the time of establishing the DAC method, the paper proposes a segmentation structure of DAC. binary redundancy compensation and capacitor separation technology based on binary through redundancy compensation technology, reduces the DAC requirement, shorten the DAC setup time; by separating the capacitor technology reduces the DAC time constant to improve the speed of DAC, was established. In 12 SAR ADC, and the traditional segmental structure compared to DAC, DAC proposed the total build time reduced by 55%, speed 1 times higher. High speed DAC structure based on 0.18 m CMOS technology to achieve a 12 bit high speed SAR ADC. test results show that the highest conversion rate of up to 100MS/s ADC, SNDR 59dB, power consumption of 6.2mW.3, aiming at the nonlinear capacitance of DAC capacitor array SAR in ADC due to the mismatch problem is studied in this paper. The capacitor mismatch correction DAC capacitor array, this paper presents a self calibration technique of digital domain multiplexing based on low capacitance array. The technique by multiplexing the low section capacitor array as the calibration DAC, before the start of the normal conversion in ADC, the peak of capacitor array capacitance from high to low by a mismatch error detection and quantization, and error code stored. Normal conversion after the start of the original code output and error codes and obtain the final output. In order to solve the mismatch error estimation of offset comparator needed in Piezoelectric The correction in the two stage dynamic comparator is the first level and second level respectively introduce additional load balancing method of capacitance compensation offset voltage was analyzed, found in the first level implementation advantage offset voltage compensation method. The results of this analysis, propose an offset correction circuit load capacitance compensation based on the offset voltage of the comparator is reduced to less than 1LSB, to meet the requirements of the accuracy of the system. Design of a 12 bit SARADC digital domain is proposed based on self correction, and the circuit level simulation in 40nm CMOS process. The simulation results show that the proposed digital self-tuning technology effectively reduces the influence of the.4 capacitor mismatch on the performance of ADC SAR, the DAC of low power dual capacitor array is studied, put forward the improved double capacitor array DAC. compared with the traditional structure, the improved double capacitor array Column DAC in power and area were reduced by 99.3% and 71.9%. the two level dynamic comparator structure was studied, this paper proposes two level dynamic comparator with improved structure, by increasing the latch as the first level load, improve the comparator gain, so as to further improve the speed of the comparator.
【學位授予單位】:東南大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TN792
【相似文獻】
相關期刊論文 前10條
1 洪志良;逐次逼近A/D變換器和D/A變換器[J];微電子學;1996年03期
2 王向陽,楊紅穎;基于改進逐次逼近量化與復雜關聯(lián)模型的零樹圖像編碼算法[J];計算機輔助設計與圖形學學報;2002年06期
3 劉天順;用二片8位D/A構成16位A/D變換器[J];電子技術應用;1987年06期
4 萬明康;陳國軍;王大鳴;;基于FPGA的開方運算實現(xiàn)[J];數(shù)據(jù)采集與處理;2006年S1期
5 朱明;逐次逼近作圖法——介紹一種計算主軸坐標的新方法[J];組合機床通訊;1974年04期
6 何樂生;宋愛國;黃惟一;;現(xiàn)代高精度逐次逼近式數(shù)模轉換器使用中的幾個問題[J];傳感技術學報;2006年01期
7 徐太龍;薛峰;蔡志匡;鄭長勇;;快速全數(shù)字逐次逼近寄存器延時鎖定環(huán)的設計[J];計算機工程;2014年04期
8 王百鳴;一種基于流水逐次逼近比較方式的模/數(shù)轉換器[J];微電子學;2001年02期
9 陳鋮穎;黑勇;胡曉宇;;一種軌至軌10位逐次逼近模數(shù)轉換器的設計[J];微電子學;2012年05期
10 吳葆仁;;漸近平衡法用于海洋儀器的數(shù)字化[J];海洋技術;1979年04期
相關會議論文 前1條
1 魏微;陸衛(wèi)國;王錚;;電容陣列式逐次逼近模數(shù)變換器的誤差分析及刻度[A];第十六屆全國核電子學與核探測技術學術年會論文集(上冊)[C];2012年
相關重要報紙文章 前1條
1 江蘇徐州技師學院機電系 李偉民;“曹沖稱象”與逐次逼近式A/D轉換器的工作原理[N];電子報;2008年
相關博士學位論文 前4條
1 盧宇瀟;氋速低功耗逐次逼近式ADC研究與實現(xiàn)[D];上海交通大學;2014年
2 李冬;基于逐次逼近結構的高速低功耗模數(shù)轉換器研究[D];東南大學;2017年
3 武海軍;混合結構逐次逼近模數(shù)轉換器研究與設計[D];華南理工大學;2014年
4 黃亮;變壓器局部放電源的半定松弛逐次逼近定位方法研究[D];重慶大學;2014年
相關碩士學位論文 前10條
1 沈易;逐次逼近—流水線混合型模數(shù)轉換器研究[D];西安電子科技大學;2014年
2 孫甜甜;基于65nm CMOS的10位低功耗逐次逼近ADC[D];西安郵電大學;2016年
3 王系寶;雙通道時域交織流水線逐次逼近混合型A/D轉換器設計與研究[D];西安電子科技大學;2016年
4 葉瀅;一種10bitsC_R混合SAR_ADC設計[D];西安電子科技大學;2016年
5 王玲玲;10位10M采樣率逐次逼近模數(shù)轉換器設計[D];蘇州大學;2016年
6 周晗;一種12位逐次逼近模數(shù)轉換器的研究與設計[D];北京理工大學;2016年
7 劉韋韋;新型逐次逼近寄存器延時鎖定環(huán)的設計[D];安徽大學;2012年
8 孫彤;低功耗逐次逼近模數(shù)轉換器的研究與設計[D];清華大學;2007年
9 尚曉丹;逐次逼近ADC的算法研究[D];四川大學;2006年
10 高翔;逐次逼近式ADC的功耗與精度平衡設計研究[D];西安電子科技大學;2010年
,本文編號:1368640
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1368640.html