天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 信息類博士論文 >

陣列調(diào)制激光三維成像雷達(dá)編解碼及信號處理技術(shù)研究與實(shí)現(xiàn)

發(fā)布時間:2017-12-31 17:26

  本文關(guān)鍵詞:陣列調(diào)制激光三維成像雷達(dá)編解碼及信號處理技術(shù)研究與實(shí)現(xiàn) 出處:《南京大學(xué)》2016年博士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: 陣列調(diào)制LIDAR 編解碼技術(shù) 編碼全波形 信號增強(qiáng) 優(yōu)化LM波形分解 虛擬儀器技術(shù)


【摘要】:陣列成像LIDAR具有高靈敏、高隱蔽、高精度、高幀頻、無掃描、結(jié)構(gòu)輕小等優(yōu)勢,因而成為成像LIDAR領(lǐng)域的一個重要的發(fā)展對象。近年來,隨著集成電路制造技術(shù)的飛速發(fā)展,傳統(tǒng)的小面陣探測器已經(jīng)朝著大面陣或超大面陣規(guī)模發(fā)展,使得陣列成像LIDAR的成像分辨率、成像精度都有了巨大的提高。然而,陣列成像LIDAR的研究過于集中在探測器件的生產(chǎn)制造上,硬件成本和體積大幅度增加的同時,成像性能卻提高有限,傳統(tǒng)的陣列LIDAR系統(tǒng)面臨著極大的局限性。在此情況下,從根本上改進(jìn)陣列LIDAR的探測機(jī)制,擺脫硬件設(shè)計和工藝的束縛,將會打開一條全新的發(fā)展方向,而目前卻尚未出現(xiàn)在這一方面的創(chuàng)新性研究。因此,本文基于陣列成像LIDAR開展深入的研究和探索。目前的陣列LIDAR探測技術(shù)表明,探測機(jī)理建立的是探測器與目標(biāo)像素的單一性對應(yīng)關(guān)系,因而造成分辨率受限于探測器規(guī)模的特點(diǎn)。以此作為突破口,引入編碼技術(shù),建立目標(biāo)像素與編碼位數(shù)的對應(yīng)關(guān)系;再通過復(fù)用技術(shù),實(shí)現(xiàn)單一探測器對多目標(biāo)像素的復(fù)合接收;最后通過解碼技術(shù)實(shí)現(xiàn)對混合復(fù)用信號的多像素識別;谶@一全新的思路,本文開展了如下的研究工作:介紹陣列調(diào)制LIDAR的系統(tǒng)結(jié)構(gòu)和工作原理,以此為依據(jù)開展后續(xù)工作。與傳統(tǒng)陣列LIDAR相比,陣列調(diào)制LIDAR的光源需要經(jīng)過整形和編碼,以實(shí)現(xiàn)對目標(biāo)像素的編碼。接收端對編碼像素后向散射的信號進(jìn)行分組耦合和復(fù)用接收。接收端通過有效的數(shù)字解調(diào)算法對混合編碼波形進(jìn)行處理,分離出所有像素信息。如此設(shè)計的效果是,M元探測器陣列的每一單元復(fù)用N位經(jīng)過編碼的目標(biāo)像素,并實(shí)現(xiàn)對所有像素的高精度識別。也就是說,M元探測器陣列借助N位編碼最終獲得M×N像素陣列的信息,從而極大地減少了傳統(tǒng)方法對探測器及相應(yīng)的讀取電路的要求。針對全新的陣列調(diào)制編碼LIDAR系統(tǒng),首先開展了編解碼技術(shù)的研究。本文建立了包括陣列編碼、像素復(fù)用、編碼全波形解碼的完整的編解碼技術(shù)理論體系。將實(shí)際需要解決的物理問題轉(zhuǎn)化為數(shù)學(xué)模型,經(jīng)過推導(dǎo)和演算,證明了激光編解碼實(shí)現(xiàn)多像素探測的理論可行性。同時,設(shè)計合適的硬件模塊實(shí)現(xiàn)方法完成對每一步數(shù)學(xué)操作的功能,進(jìn)而證明了激光編解碼技術(shù)的可實(shí)現(xiàn)性。陣列調(diào)制編碼LIDAR在結(jié)合了編解碼技術(shù)后,獲得的觀測數(shù)據(jù)波形與傳統(tǒng)全波形有所區(qū)別,因而需要進(jìn)一步探索這種特殊編碼全波形的數(shù)據(jù)處理方法。首要的任務(wù)是采用何種信號增強(qiáng)方法來提高信噪比,以提高探測距離和成像精度。本文提出了一種基于數(shù)字解調(diào)積累、小波優(yōu)化閾值、Vondrak平滑的信號增強(qiáng)處理方法,在完成像素信息解碼的同時實(shí)現(xiàn)了周期噪聲積累、小波閾值多尺度去噪和局部毛刺消解,有效地提高了各解調(diào)像素特征波形的信噪比。經(jīng)過數(shù)字解調(diào)后的各像素特征波形因目標(biāo)形狀的差異往往包含多個特征參數(shù),需要借助高效的擬合算法實(shí)現(xiàn)特征參數(shù)的分解。本文提出了優(yōu)化LM波形分解方法,實(shí)現(xiàn)了更高速、更高精度的波形數(shù)據(jù)分解。首先改進(jìn)初始參數(shù)估計方法,減少了運(yùn)算的時間。接著提出LM算法模型的最優(yōu)調(diào)諧模型,大幅度地提高了迭代算法的收斂速度。其次,通過改進(jìn)傳統(tǒng)高斯分解的基波,使之匹配實(shí)際激光波形,可有效地提高了波形擬合的精度,從而提高最終像素的分解精度。該算法不僅適用于本系統(tǒng),也適用于大部分全波形LIDAR系統(tǒng),可實(shí)現(xiàn)大幅寬、高精度的目標(biāo)探測。最后,陣列調(diào)制LIDAR的大視場線陣探測方式要求對波形分解所得到的陣列像素的飛行距離信息進(jìn)行正射投影修正,本文推導(dǎo)了相應(yīng)的正射投影距離轉(zhuǎn)換的算法。在理論研究的基礎(chǔ)上,本文最后展示了陣列調(diào)制LIDAR系統(tǒng)的原理樣機(jī)和數(shù)據(jù)處理系統(tǒng),并進(jìn)行了現(xiàn)場實(shí)驗(yàn)。在進(jìn)行試驗(yàn)之前,需要對系統(tǒng)各模塊、編碼驅(qū)動器、系統(tǒng)同步控制參數(shù)進(jìn)行檢查,以確保整個系統(tǒng)正常運(yùn)行;谔摂M儀器技術(shù)設(shè)計數(shù)據(jù)處理系統(tǒng),不僅實(shí)現(xiàn)了軟件系統(tǒng)與硬件系統(tǒng)的高度集成,完成實(shí)時數(shù)據(jù)獲取及處理,而且可以方便系統(tǒng)移植和系統(tǒng)升級。虛擬仿真系統(tǒng)采用三維控件設(shè)計仿真測試目標(biāo)和虛擬環(huán)境,結(jié)合數(shù)據(jù)處理模塊完成仿真實(shí)驗(yàn),對數(shù)據(jù)處理系統(tǒng)的功能性驗(yàn)證起到了關(guān)鍵性作用。最后,對軟硬件系統(tǒng)聯(lián)調(diào),完成外場實(shí)驗(yàn)。一代樣機(jī)包括4元APD與8位編碼,即單幀32像素。將其應(yīng)用到室內(nèi)動態(tài)測距實(shí)驗(yàn),以初步驗(yàn)證陣列調(diào)制LIDAR測距的有效性。二代樣機(jī)包括4元APD與64位編碼,即單幀256像素。將其應(yīng)用到室外動態(tài)三維成像實(shí)驗(yàn),證明了陣列調(diào)制LIDAR在更復(fù)雜的環(huán)境中可實(shí)現(xiàn)小規(guī)模探測器陣列完成高分辨率、高精度的三維成像。最后,對陣列調(diào)制LIDAR的橫向分辨率、掃描分辨率、距離分辨率等指標(biāo)進(jìn)行了綜合評價,以指導(dǎo)未來的新一代樣機(jī)的研究。
[Abstract]:LIDAR array imaging with high sensitivity, high concealment, high precision, high frame rate, without scanning, light structure and other advantages, and thus become an important development object field of LIDAR imaging. In recent years, with the rapid development of integrated circuit manufacturing technology, the traditional facet array detector has a large array or large surface the scale of the development of the array, the resolution of the imaging array LIDAR imaging, the imaging accuracy has been improved dramatically. However, the research of LIDAR array imaging is too focused on the production of the detection device, the hardware cost and the volume increases greatly, but improve the imaging performance, array of traditional LIDAR system faces great limitations. In this case, the detection mechanism fundamentally improved LIDAR array, get rid of the shackles of hardware design and process, will open a new direction of development, and now has not yet appeared in the party The study of innovation. Therefore, this paper carried out an in-depth study and exploration of LIDAR array imaging based on LIDAR array detection technology. That at present, the detection mechanism is established for the single correspondence between the detector and the target pixel, resulting in the characteristics of the detector resolution is limited scale. As a breakthrough, the introduction of encoding technology, and established the corresponding relationship between the target the pixel and the encoding bits; through multiplexing technology, realize receiving single detector of composite target pixel; finally through decoding technology to achieve multi pixel identification of mixed multiplexing signals. This new method based on the research works in this dissertation are as follows: this paper introduces the system structure and working principle of the LIDAR modulation array, in order to carry out on the basis of the follow-up work. Compared with the traditional light source array array LIDAR, LIDAR modulation by shaping and encoding, in order to achieve the target Pixel encoding. The receiver encoding pixel backscattering signal packet coupling and multiplexing receiving. The receiving end to mixed encoding process the waveforms through digital demodulation algorithm, separated all the pixels information. So the design effect is that each unit of multiplexing N M yuan detector array after the target pixel encoding, and to achieve high accuracy recognition for all pixels. That is to say, N encoding for M * N pixel array information through the M element detector array, thereby reducing the traditional method of detector and the corresponding read circuit requirements greatly. Aiming at the array modulation encoding the new LIDAR system, first launched a research series decoding technology. In this paper, including the establishment of an array of pixel multiplexing, encoding, decoding and encoding full waveform complete coding theory. The actual need to solve the physical problem into a number of The model, after deduction and calculation, proved the feasibility of laser decoding theory of multi pixel detection. At the same time, the design of appropriate hardware module method to complete each step of the mathematical operation function, and prove that the realization of laser encoding and decoding technology. In combination with LIDAR modulation array encoding decoding technology. The difference was the waveform of the observational data and the traditional full waveform, and needs further exploration of this special encoding full waveform data processing method. The primary task is to enhance the method to improve the signal-to-noise ratio of the signal to improve the detection distance and imaging precision. This paper presents a digital demodulation based on wavelet threshold optimization, accumulation the signal processing method to enhance Vondrak accumulation of smooth, while finishing the pixel information decoding to achieve periodic noise, wavelet threshold denoising and multi-scale local burr elimination solution, a Effectively improve the demodulation pixel characteristic waveform signal to noise ratio. After each pixel feature waveform after digital demodulation due to differences in the shape of the object often contain multiple parameters, need to decompose characteristic parameters by using the fitting algorithm efficient. This paper proposed a decomposition optimization method of LM waveform, to achieve a more rapid, more waveform data high precision decomposition. First improve the initial parameter estimation method, reduces the computation time. Then the optimal tuning model LM algorithm, greatly improve the convergence speed of the iterative algorithm. Secondly, through the improvement of the traditional fundamental Gauss decomposition, to match the actual laser waveform, which can effectively improve the waveform fitting the precision, so as to improve the accuracy of the final pixel decomposition. This algorithm is not only suitable for this system is also suitable for most of the full waveform of the LIDAR system, can achieve a wide, high precision of target. Test. Finally, large field line array LIDAR modulation array detection for flight distance information of the pixel array waveform decomposition of orthographic projection correction, derived orthographic projection distance transformation algorithm. On the basis of theoretical research, this paper shows the principle prototype array and data processing system modulation of the LIDAR system, and carried out field experiments. Before the test, the need for each module, encoding system drive, synchronous control system parameters for inspection, to ensure the normal operation of the whole system. The technology design of data processing system based on virtual instrument, not only to achieve a highly integrated software system and hardware system, real-time data acquisition and processing, and can facilitate the system transplantation and system upgrade. The virtual simulation system using three-dimensional control design and simulation test target and virtual environment, combined with the number of According to the processing module to complete the simulation experiment, the key role of the functional verification of the data processing system. Finally, the software and hardware of the system debugging, complete experiment. A prototype including 4 yuan APD and 8 bit encoding, namely single frame 32 pixels. Its application to the ranging experiment indoor dynamic, in order to effectively preliminary validation of array LIDAR modulation range. The two generation prototype including 4 yuan APD and 64 bit encoding, namely single frame 256 pixels. Its application to 3D imaging experiments proved that the outdoor dynamic array, LIDAR modulation can achieve small scale array detector with high resolution in a more complex environment, 3D imaging with high precision. Finally, the transverse resolution of array LIDAR modulation scanning resolution, range resolution and other indicators of the comprehensive evaluation and research to guide the future of the new generation prototype.

【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TN957.51

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 董洪舟;敖明武;楊若夫;吳健;楊春平;;基于陣列探測器的空間失配角匹配外差探測研究[J];激光與光電子學(xué)進(jìn)展;2012年08期

2 張鳳羽,陳蘭;非晶硅陣列探測器[J];真空電子技術(shù);1995年02期

3 張良;潘曉東;;基于480×6陣列探測器的紅外連續(xù)變焦光學(xué)系統(tǒng)設(shè)計[J];光子學(xué)報;2014年04期

4 ;業(yè)界動態(tài)[J];傳感器世界;2007年02期

5 馬紅章,劉素美,顧松山;45°掃描鏡陣列探測器的排放[J];紅外與激光工程;2005年03期

6 唐世彪;黃環(huán);陰澤杰;;鍺酸鉍陣列探測器用于中子激發(fā)發(fā)射計算機(jī)斷層掃描成像[J];強(qiáng)激光與粒子束;2008年03期

7 姜嘯宇;鐘聲;趙圣;;紅外陣列探測器研究進(jìn)展[J];商品與質(zhì)量;2010年SA期

8 喬春紅;田國昌;范承玉;王英儉;;高功率激光陣列探測器中光強(qiáng)分布復(fù)原方法[J];紅外與激光工程;2009年05期

9 胡孟春,葉文英,唐章奎,李忠寶;新型PIN陣列探測器[J];儀器儀表學(xué)報;2005年S1期

10 張增輝 ,沈激 ,陳子瑜 ,韋東山 ,劉小樺;X-Scan X射線線陣列探測器并行幀捕獲卡[J];電子技術(shù)應(yīng)用;2005年01期

相關(guān)會議論文 前10條

1 蔡明生;郭建華;謝明鋼;鄭春曉;;碲鋅鎘陣列探測器最新結(jié)果[A];第二十五屆全國空間探測學(xué)術(shù)研討會摘要集[C];2012年

2 錢永庚;賈麗紅;王克華;王經(jīng)瑾;;固體陣列探測器及其信號處理電路[A];第8屆全國核電子學(xué)與核探測技術(shù)學(xué)術(shù)年會論文集(一)[C];1996年

3 鄔海峰;安繼剛;王立強(qiáng);劉以思;鄭沅水;高寶增;;清華大學(xué)集裝箱檢測系統(tǒng)陣列探測器性能研究[A];第8屆全國核電子學(xué)與核探測技術(shù)學(xué)術(shù)年會論文集(一)[C];1996年

4 張前美;曹錦云;;利用密封閃爍纖維陣列探測器測量脈沖裂變中子的可行性研究[A];第9屆全國核電子學(xué)與核探測技術(shù)學(xué)術(shù)年會論文集[C];1998年

5 何均章;高學(xué)燕;袁學(xué)文;傅淑珍;周殿華;周山;謝川林;關(guān)有光;魏繼鋒;;激光束陣列探測器標(biāo)定方法[A];中國工程物理研究院科技年報(2003)[C];2003年

6 楊杰;過惠平;李如松;;X或γ射線陣列探測器的現(xiàn)狀與發(fā)展[A];第十三屆全國核電子學(xué)與核探測技術(shù)學(xué)術(shù)年會論文集(上冊)[C];2006年

7 王金川;武麗杰;肖國青;郭忠言;徐瑚珊;祁輝榮;徐治國;陳志強(qiáng);張力;丁先利;孫志宇;李加興;李琛;高輝;詹文龍;蘇弘;王彥瑜;;大型陣列探測器多路PMT高壓電源控制系統(tǒng)的研制進(jìn)展[A];第十二屆全國核電子學(xué)與核探測技術(shù)學(xué)術(shù)年會論文集[C];2004年

8 胡孟春;葉文英;李忠寶;唐章奎;宋獻(xiàn)才;唐正元;;新型PIN陣列探測器的靈敏度實(shí)驗(yàn)測量[A];2004全國測控、計量與儀器儀表學(xué)術(shù)年會論文集(上冊)[C];2004年

9 胡孟春;葉文英;唐章奎;李忠寶;;新型PIN陣列探測器[A];第三屆全國信息獲取與處理學(xué)術(shù)會議論文集[C];2005年

10 高學(xué)燕;傅淑珍;關(guān)有光;裴春蘭;葉一東;蘇毅;;強(qiáng)激光陣列探測器中的單通道定標(biāo)法分析[A];中國工程物理研究院科技年報(1999)[C];1999年

相關(guān)博士學(xué)位論文 前2條

1 徐帆;陣列調(diào)制激光三維成像雷達(dá)編解碼及信號處理技術(shù)研究與實(shí)現(xiàn)[D];南京大學(xué);2016年

2 趙紅峗;新型塑閃陣列探測器讀出系統(tǒng)的研究與實(shí)現(xiàn)[D];中國科學(xué)院研究生院(近代物理研究所);2015年

相關(guān)碩士學(xué)位論文 前6條

1 岳恒;全集成高密度單光子雪崩二極管陣列探測器研究[D];南京郵電大學(xué);2015年

2 肖艷俠;西藏ASγ實(shí)驗(yàn)擴(kuò)展項(xiàng)目原型陣列的性能研究[D];山東大學(xué);2016年

3 和麗娟;MPPC陣列探測器在衛(wèi)星激光測距中的應(yīng)用研究[D];中國科學(xué)院研究生院(云南天文臺);2016年

4 姜嘯宇;紅外陣列探測器及邊緣檢測的研究[D];天津理工大學(xué);2012年

5 張曉瑾;嵌入式X射線陣列探測器開發(fā)及其數(shù)據(jù)通訊應(yīng)用研究[D];東北大學(xué);2009年

6 鄧小翠;(Pb,,La)(Zr,Ti)O_3鐵電陣列的制備及其性能研究[D];西安理工大學(xué);2007年



本文編號:1360736

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1360736.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶79962***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com