量子集成光學芯片上的器件設計
本文關鍵詞:量子集成光學芯片上的器件設計 出處:《中國科學技術大學》2017年博士論文 論文類型:學位論文
更多相關文章: 量子集成光學芯片 集成波導 絕熱轉化 表面等離激元 非線性光學 集成光學器件
【摘要】:在當今社會中,人們的日常生活越來越離不開電子產品,不論是筆記本電腦,還是平板電腦,尤其是人手一份的移動手機。隨著信息量的爆炸式增長,集成電子學的飛速發(fā)展,其物理學瓶頸也日益顯現,比如,當集成度高到電路僅能容一個電子傳輸時,電子的隧穿效應等便不能忽視。而以光子為信息載體的集成光學芯片,因其編碼自由度高、響應速率快、傳輸速度快、并行性高、相容性好等諸多優(yōu)勢,迅速進入了人們的視野。但是,為了適應未來更高信息量的要求,同時擁有更快信息處理速度和更低能量消耗,發(fā)展基于量子力學的量子集成光學芯片成為了必然趨勢。事實上,早在一個世紀前,普朗克、愛因斯坦等科研先驅首先從光中發(fā)現量子概念開始,就注定了光學與量子力學的密不可分性。一個功能性的集成光學芯片與集成電子芯片一樣,也包含光源、光傳輸、光探測、光調制、門操作等各種元器件。本論文致力于量子集成光學芯片上的器件設計的研究,一方面是線性的光學元器件,實現對光子態(tài)的操縱,另一方面是基于非線性光學相互作用制成的集成元器件,實現對光子態(tài)的制備。具體的研究內容包括:(1)我們從量子光學中的受激拉曼絕熱通道概念得到啟發(fā),提出了一個偏振旋轉器的設計,該器件在以光子偏振編碼的量子信息處理中可以用作Pauli X門。偏振旋轉器的結構包含一個信號波導和一個輔助波導,信號波導中的兩個正交偏振模式和輔助波導中的輔助模式,形成了一個A型三能級系統(tǒng)。通過控制信號波導的寬度和兩個波導之間的距離,便可以在信號波導中絕熱地實現兩個正交模式間的相互轉化。所需的波導長度僅為150μm,而水平和豎直偏振間的相互轉化效率均可達到99%以上。并且,這樣的偏振旋轉器設計對于加工誤差不敏感,因而旋轉器的結構參數的容錯度都很高。這個工作表明,我們可以用特定結構的波導對一些相干的量子現象進行光學模擬,同時也啟發(fā)我們將這些量子現象應用到實際的光學器件設計中。.(2)同樣是利用絕熱模式轉化的思想,我們提出了一個集成的能量吸收器的設計,用于將集成光學芯片上的雜散光吸收掉,其工作原理是引入金屬,利用表面等離激元的吸收損耗。在40μm長的器件內,入射光(1550nm)的吸收效率高達99.8%,即反射率和透射率均小于0.1%。由于是絕熱的轉化,所以其工作效率對入射波長不敏感,在300nm的帶寬范圍內均保持穩(wěn)定,并且對周圍的工作環(huán)境和溫度也不敏感。而且,金屬的使用令器件可以非常小,散熱的問題也更容易解決。這樣的器件對于集成光學芯片很重要,因為芯片上常常會用到高功率的泵浦光,或者會有雜散光影響弱光測量。而在光子態(tài)制備方面,則需要借助非線性光學相互作用。比如利用二階非線性光學效應(二倍頻、參量下轉換等),能夠產生相互關聯、相互糾纏的光子對;或者需要用三階非線性光學效應(四波混頻等),將原本不相關的光子關聯起來。對于硅基非線性器件,最低階只有三階非線性光學效應,且功耗相對較高,所有我們主要關注的是二階非線性光學材料,如氮化鋁和鈮酸鋰,它們的二階非線性系數都很高,并且線性傳輸損耗也都很低,最重要的是,它們的加工工藝與CMOS兼容,是非常棒的替代硅基非線性器件的材料。(1)我們提出用集成的寬度變化的氮化鋁波導,在光子學芯片上實現了基于二階非線性光學效應的光子頻率轉換。我們證實,在絕熱錐形波導中,頻率轉換譜更寬帶,并且在有效帶寬范圍內,非線性轉換效率幾乎不變,這對于短脈沖的頻率轉換是非常有利的。這樣一個簡單卻有效的設計,不僅對誤差的容錯度更高,也使得我們可以調整器件的工作帶寬。我們還用解析方法以及數值方法證明了頻率轉換過程中的"面積定則",可以用于以后設計非線性集成光學器件的通用法則。用我們的方法,在集成芯片上對短脈沖進行高效的、波形可保持的頻率轉換成為了可能,為未來可擴展的集成光學信息處理打下了基礎。(2)我們展示了在刻蝕的薄膜鈮酸鋰微納波導中實現的相位匹配的二倍頻過程。集成的薄膜鈮酸鋰芯片最近初露鋒芒,有望用于下一代可密集封裝、可批量生產的高效率的頻率轉換系統(tǒng)。我們采用了兩種機制:首先是在波導寬度恒定的均勻波導中進行了模式相位匹配,然后在寬度周期調制的波導中進行了準相位匹配。我們對兩種波導均進行了理論分析和實驗驗證。實驗證明,我們的微納波導的線性傳輸損耗(~3.0dB/cm)使得歸一化的非線性轉換效率可以高達41%W-1cm-2。
[Abstract]:In today's society, people's daily life is more and more inseparable from electronic products, whether laptops or tablet computers, especially mobile phones with human hands. With the explosive growth of information and the rapid development of integrated electronics, its physical bottlenecks are also emerging. For example, when the integration level is high enough to only allow one electron transmission, the electron tunneling effect can not be ignored. The integrated optical chip based on photon as information carrier has rapidly entered the field of vision because of its many advantages, such as high coding freedom, fast response speed, fast transmission speed, high parallelism and good compatibility. However, in order to adapt to the future higher information requirements and have faster information processing speed and lower energy consumption, the development of quantum integrated optical chip based on quantum mechanics has become an inevitable trend. In fact, a century ago, the pioneers of Planck and Einstein first discovered the concept of quantum from light, and they doomed the inseparability between optics and quantum mechanics. A functional integrated optical chip, like integrated electronic chips, also includes a variety of components such as light source, light transmission, light detection, light modulation, gate operation and so on. This paper is devoted to the research of device design on quantum integrated optical chip. On the one hand, it is a linear optical component, which realizes the manipulation of photon state. On the other hand, it is an integrated component based on nonlinear optical interaction to realize the preparation of photon state. The specific research contents include: (1) inspired by the concept of stimulated Raman adiabatic passage in quantum optics, we propose a design of polarization rotator, which can be used as Pauli X gate in quantum information processing based on photon polarization encoding. The structure of the polarization rotator includes a signal waveguide and an auxiliary waveguide. The two orthogonal polarization modes in the signal waveguide and the auxiliary mode in the auxiliary waveguide form a A type three level system. By controlling the width of the signal waveguide and the distance between the two waveguides, the mutual transformation between the two orthogonal modes can be adiabatic in the signal waveguide. The required waveguide length is only 150 m, and the mutual conversion efficiency between the horizontal and vertical polarization can reach more than 99%. Moreover, the design of such a polarizer is not sensitive to the machining error, so the fault tolerance of the structural parameters of the revolver is very high. This work shows that we can simulate the phenomena of some coherent quantum with the waveguide of specific structure, and enlighten us to apply these quantum phenomena to the design of practical optical devices. (2) similarly, the idea of transforming adiabatic mode is applied. We propose an integrated energy absorber designed to absorb stray light on the integrated optical chip. Its working principle is to introduce metal and use surface plasmon absorption loss. In the 40 m long device, the absorption efficiency of the incident light (1550nm) is as high as 99.8%, that is, the reflectivity and the transmittance are less than 0.1%. Because of the adiabatic transformation, its working efficiency is insensitive to the incident wavelength, and remains stable in the bandwidth range of 300nm, and it is also not sensitive to the surrounding working environment and temperature. Moreover, the use of metal makes the device very small, and the problem of heat dissipation is easier to solve. Such devices are important for integrated optical chips, because a high power pump is often used on the chip, or there will be a stray light that affects weak light measurements. In the fabrication of photon states, the nonlinear optical interaction is needed. For example, the two order nonlinear optical effect (two frequency doubling, parameter down conversion, etc.) can produce correlated and entangled photon pairs, or the three order nonlinear optical effect (four wave mixing, etc.) can be used to associate the previously uncorrelated photons. For silicon based nonlinear devices, the lowest order only three order nonlinear optical effect, and the power consumption is relatively high, all our main concern is the two order nonlinear optical materials, such as aluminum nitride and lithium niobate, two order nonlinear coefficient are very high, and the linear transmission losses are very low, and most importantly, processing technology with their CMOS compatible, is an alternative to silicon based nonlinear devices very good material. (1) we present a photonic frequency conversion based on the two order nonlinear optical effect on a photonics chip using an integrated width varying aluminum nitride waveguide. We confirm that in adiabatic tapered waveguide, the frequency conversion spectrum is wider, and the nonlinear conversion efficiency is almost unchanged within the effective bandwidth range, which is very beneficial for short pulse frequency conversion. Such a simple but effective design not only has a higher error tolerance, but also allows us to adjust the bandwidth of the device. We also use the analytical method and numerical method to prove the "area rule" in the frequency conversion process, which can be applied to the general rule of designing nonlinear integrated optical devices later. With our method, efficient and constant frequency conversion of short pulses on integrated chips is possible, which lays the foundation for future scalable integrated optical information processing. (2) we show the two frequency doubling process of phase matching in an etching thin film lithium niobate waveguide. Thin film lithium niobate chip integrated recently is expected to be used in high efficiency can begin to display talents, dense packaging and batch production of the next generation of frequency conversion system. We have adopted two mechanisms: first, mode phase matching is performed in uniform waveguide with constant waveguide width, and then quasi phase matching is performed in a wide frequency modulated waveguide. We have carried out theoretical analysis and experimental verification on all two kinds of waveguides. The experimental results show that the linear transmission loss (~ 3.0dB/cm) of our nanofilm waveguide makes the normalized nonlinear conversion efficiency possible
【學位授予單位】:中國科學技術大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:O413;TN256
【相似文獻】
相關期刊論文 前10條
1 陳明;集成光學發(fā)展現狀及對未來的影響——歐洲第十屆集成光學會議簡介[J];真空電子技術;2001年06期
2 陳明;集成光學發(fā)展現狀及對未來的影響——歐洲第十屆集成光學會議簡介[J];真空科學與技術;2002年01期
3 卿光;;集成光學展望:1980~2000[J];激光與光電子學進展;1983年01期
4 宇飛;;集成光學——1977年[J];激光與光電子學進展;1978年09期
5 宗蘭;;什么是集成光學——新技術簡介[J];激光與紅外;1972年10期
6 丁麗娜;集成光學—1977[J];國外發(fā)光與電光;1978年02期
7 劉旭東;集成光學及其應用[J];兵器激光;1981年02期
8 方舟 ,嚴寒;集成光學器件[J];光機電信息;2001年12期
9 ;集成光學 集成光學、波導理論[J];中國光學與應用光學文摘;2005年01期
10 ;集成光學[J];中國光學與應用光學文摘;2006年02期
相關會議論文 前6條
1 沈鋒;;高性能集成光學相位調制器技術研究[A];新世紀 新機遇 新挑戰(zhàn)——知識創(chuàng)新和高新技術產業(yè)發(fā)展(上冊)[C];2001年
2 康佳;張巖;周航宇;方亞;;一種集成光學器件的壽命研究[A];2009年先進光學技術及其應用研討會論文集(下冊)[C];2009年
3 石邦任;孔梅;宋哲;李永大;;閉環(huán)光纖陀螺用集成光學聲光芯片[A];全國第十次光纖通信暨第十一屆集成光學學術會議(OFCIO’2001)論文集[C];2001年
4 王明華;郝寅雷;李錫華;周強;江曉清;楊建義;;離子交換玻璃光波導工藝與集成光學器件研究[A];2006年全國光電技術學術交流會會議文集(E 光電子器件技術專題)[C];2006年
5 ;特別致謝[A];全國第十二次光纖通信暨第十三屆集成光學學術會議論文集[C];2005年
6 嚴朝軍;周其力;向柳;蔣冰華;;模轉換與合并器件的數值設計[A];全國第十三次光纖通信暨第十四屆集成光學學術會議論文集[C];2007年
相關重要報紙文章 前3條
1 記者 桂運安;中科大量子集成光學芯片研究獲新進展[N];安徽日報;2014年
2 宦建新;畫龍點睛[N];科技日報;2004年
3 沈天桔 劉秀麗 李婷;全國第十四次光纖通信暨第十五屆集成光學學術會議召開[N];大眾科技報;2009年
相關博士學位論文 前7條
1 熊霄;量子集成光學芯片上的器件設計[D];中國科學技術大學;2017年
2 鄒長鈴;量子集成光學芯片器件的研究[D];中國科學技術大學;2013年
3 肖立峰;集成光學聲光可調諧濾波器的研究及應用[D];天津大學;2007年
4 恩德;邁克爾遜干涉型集成光學加速度地震檢波器的理論與實驗研究[D];天津大學;2005年
5 陸榮國;有機聚合物集成光學RF移相器關鍵技術研究[D];電子科技大學;2009年
6 孫豹;集成光學電磁場傳感器研究[D];電子科技大學;2010年
7 林航友;準共線耦合的集成聲光可調諧波長濾波器的研究[D];天津大學;2004年
相關碩士學位論文 前7條
1 江飛鵬;中紅外透明薄膜材料和集成光學器件研究[D];電子科技大學;2016年
2 李霞;玻璃基多模干涉型集成光學器件研制[D];浙江大學;2005年
3 王世軍;集成光學環(huán)形諧振腔的研究[D];浙江大學;2008年
4 楊擁軍;新型低損耗大角度Y分支集成光波導的研究[D];電子科技大學;2004年
5 王曉麗;集成光學電場傳感系統(tǒng)工作點控制[D];電子科技大學;2013年
6 張靜;基于微環(huán)諧振器的光學濾波器設計[D];江蘇科技大學;2013年
7 陳獻;表面等離子波波導的基礎研究[D];浙江大學;2008年
,本文編號:1347620
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1347620.html