天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 碩博論文 > 信息類博士論文 >

隨機(jī)有限集多目標(biāo)跟蹤技術(shù)研究

發(fā)布時(shí)間:2017-12-28 03:19

  本文關(guān)鍵詞:隨機(jī)有限集多目標(biāo)跟蹤技術(shù)研究 出處:《國(guó)防科學(xué)技術(shù)大學(xué)》2016年博士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: 隨機(jī)有限集 概率假設(shè)密度濾波器 序貫蒙特卡羅 多傳感器偏差校準(zhǔn) 聯(lián)合目標(biāo)跟蹤與識(shí)別 多群目標(biāo)跟蹤 圖像目標(biāo)跟蹤 后驗(yàn)克拉美羅下界


【摘要】:多目標(biāo)跟蹤的主要任務(wù)是依據(jù)傳感器獲取的含噪數(shù)據(jù)來(lái)聯(lián)合估計(jì)多目標(biāo)個(gè)數(shù)及其運(yùn)動(dòng)狀態(tài)或者運(yùn)動(dòng)航跡,性能穩(wěn)定且高效的多目標(biāo)跟蹤算法是多目標(biāo)跟蹤技術(shù)和多目標(biāo)跟蹤系統(tǒng)研究的核心,也是本課題研究的出發(fā)點(diǎn)和追求目標(biāo)。目前,多目標(biāo)跟蹤技術(shù)正朝著能處理目標(biāo)數(shù)目未知可變、檢測(cè)不確定、觀測(cè)源不確定、數(shù)據(jù)關(guān)聯(lián)不確定等復(fù)雜多目標(biāo)跟蹤問(wèn)題的方向蓬勃發(fā)展,其中尤以Ronald Mahler提出的基于隨機(jī)有限集(Random Finite Set,RFS)的一類多目標(biāo)跟蹤方法對(duì)這些復(fù)雜的場(chǎng)景具有天然的適應(yīng)性,不需要進(jìn)行復(fù)雜的數(shù)據(jù)關(guān)聯(lián)處理即可對(duì)目標(biāo)個(gè)數(shù)未知且時(shí)變的多個(gè)目標(biāo)進(jìn)行聯(lián)合檢測(cè)與跟蹤是此類跟蹤算法的最大優(yōu)勢(shì)。基于RFS的多目標(biāo)跟蹤算法為目標(biāo)監(jiān)視與防御、無(wú)人駕駛與機(jī)器人、遙感、計(jì)算機(jī)視覺(jué)、生物醫(yī)學(xué)、現(xiàn)代通信等領(lǐng)域包含的復(fù)雜多目標(biāo)跟蹤問(wèn)題提供了新的解決途徑,代表著多目標(biāo)跟蹤技術(shù)發(fā)展的新方向。本課題重點(diǎn)挑選隨機(jī)有限集框架下聯(lián)合多傳感器偏差與多目標(biāo)狀態(tài)估計(jì)技術(shù)、隨機(jī)集濾波器的航跡提取技術(shù)、基于隨機(jī)集濾波器的多群目標(biāo)跟蹤技術(shù)、隨機(jī)集框架下圖像多弱目標(biāo)檢測(cè)前跟蹤(Track-Before-Detect,TBD)技術(shù)及隨機(jī)集濾波器的后驗(yàn)克拉美羅下界(Posterior Cramer-Rao Lower Bound,PCRLB)性能評(píng)估技術(shù)這五項(xiàng)研究?jī)?nèi)容進(jìn)行深入研究,取得的主要研究成果如下:第二章提出了一種基于分層點(diǎn)過(guò)程及多群多目標(biāo)概率假設(shè)密度(Multi-group Multi-target Probability Hypothesis Density,MGMT-PHD)濾波器的聯(lián)合多傳感器偏差與多目標(biāo)狀態(tài)估計(jì)算法。該算法將多傳感器偏差集建模為父過(guò)程,多目標(biāo)狀態(tài)集則是與多傳感器偏差相關(guān)聯(lián)的子過(guò)程,通過(guò)分開(kāi)對(duì)待兩個(gè)相互交互的點(diǎn)過(guò)程,可以避免對(duì)高維增廣狀態(tài)聯(lián)合估計(jì)產(chǎn)生的巨大計(jì)算量。在利用MGMT-PHD濾波器解決多傳感器偏差和多目標(biāo)狀態(tài)的聯(lián)合估計(jì)問(wèn)題時(shí),由于多傳感器偏差的個(gè)數(shù)即為傳感器的個(gè)數(shù),即父過(guò)程的元素個(gè)數(shù)已知,且多個(gè)傳感器獨(dú)立收集觀測(cè),即觀測(cè)集分割情況是明確的,提出了MGMT-PHD濾波器的粒子實(shí)現(xiàn)形式,實(shí)現(xiàn)了非線性條件下的聯(lián)合多傳感器偏差與多目標(biāo)狀態(tài)估計(jì)。仿真實(shí)驗(yàn)考慮了一個(gè)目標(biāo)出現(xiàn)、目標(biāo)消失、目標(biāo)軌跡交叉事件出現(xiàn)的典型復(fù)雜多傳感器多目標(biāo)場(chǎng)景,驗(yàn)證了所提算法的有效性。第三章在載機(jī)與誘餌縱向可分辨的情況下,解決了末制導(dǎo)主動(dòng)雷達(dá)導(dǎo)引頭攔截戰(zhàn)機(jī)對(duì)抗背景下對(duì)波束內(nèi)載機(jī)與誘餌的聯(lián)合快速檢測(cè)、識(shí)別與穩(wěn)定跟蹤問(wèn)題。主要貢獻(xiàn)為:第一,對(duì)現(xiàn)有的加標(biāo)簽粒子PHD(Labeled Particle PHD,L-P-PHD)濾波器存在的一些局限進(jìn)行改進(jìn),提出改進(jìn)的L-P-PHD(Improved L-P-PHD,IL-P-PHD)濾波器;第二,結(jié)合現(xiàn)有的多模型技術(shù),提出能同時(shí)對(duì)多個(gè)機(jī)動(dòng)目標(biāo)進(jìn)行跟蹤與航跡維持處理的多模il-p-phd(multiplemodelil-p-phd,mm-il-p-phd)濾波器;最后,基于mm-il-p-phd濾波器,結(jié)合基于回波幅度特征的干擾存在性檢測(cè)方法以及對(duì)抗場(chǎng)景的特征信息,建立了縱向距離維可分的載機(jī)與誘餌的聯(lián)合快速檢測(cè)、穩(wěn)定跟蹤與識(shí)別處理框架。仿真實(shí)驗(yàn)表明,所提方法可以有效地實(shí)現(xiàn)對(duì)縱向距離維可分的載機(jī)與誘餌的快速檢測(cè)、穩(wěn)定跟蹤與識(shí)別處理。第四章將多群目標(biāo)建模為分層點(diǎn)過(guò)程,提出了一種基于隨機(jī)有限集的新算法,該算法能聯(lián)合估計(jì)群目標(biāo)個(gè)數(shù)、估計(jì)群中心和群內(nèi)組件的運(yùn)動(dòng)狀態(tài)、提取群中心航跡。其基本思想及涉及到的主要工作與貢獻(xiàn)為:第一,對(duì)不可分目標(biāo)phd(unresolvedtargetphd,ut-phd)濾波器的觀測(cè)更新過(guò)程進(jìn)行了具體化,給出了ut-phd濾波器觀測(cè)更新方程的具體計(jì)算方法,對(duì)ut-phd濾波器進(jìn)行加標(biāo)簽處理,利用序貫蒙特卡羅技術(shù)實(shí)現(xiàn)了ut-phd濾波器,提出加標(biāo)簽的粒子ut-phd(labeledparticleut-phd,l-p-ut-phd)濾波器,l-p-ut-phd濾波器能在估計(jì)多群目標(biāo)個(gè)數(shù)、多群目標(biāo)中心狀態(tài)的同時(shí)獲取多群目標(biāo)中心的運(yùn)動(dòng)軌跡,實(shí)現(xiàn)了多群目標(biāo)中心的聯(lián)合檢測(cè)與跟蹤;第二,基于群中心狀態(tài)估計(jì)結(jié)果提出了更為精確的觀測(cè)集分割算法,完成觀測(cè)集分割,將觀測(cè)集分割結(jié)果分配給每個(gè)群目標(biāo)對(duì)應(yīng)的單群粒子phd(single-groupparticlephd,sg-p-phd)濾波器,完成群內(nèi)組件狀態(tài)跟蹤與個(gè)數(shù)估計(jì),將群組件個(gè)數(shù)估計(jì)結(jié)果反饋至l-p-ut-phd濾波器。仿真實(shí)驗(yàn)表明,所提方法可以有效地檢測(cè)群目標(biāo)的出現(xiàn)與消失、估計(jì)群中心的運(yùn)動(dòng)狀態(tài)、獲取群中心的航跡及估計(jì)群內(nèi)組件的運(yùn)動(dòng)狀態(tài)與組件個(gè)數(shù)。第五章分別研究了影響區(qū)域不重疊和影響區(qū)域重疊的圖像多弱目標(biāo)tbd技術(shù)。針對(duì)標(biāo)準(zhǔn)phd-tbd算法存在對(duì)新生目標(biāo)發(fā)現(xiàn)延遲較久、對(duì)目標(biāo)個(gè)數(shù)估計(jì)不準(zhǔn)且存在起伏的問(wèn)題,提出了能解決這些問(wèn)題的廣義phd-tbd算法及其粒子實(shí)現(xiàn)。對(duì)于目標(biāo)影響區(qū)域重疊的圖像多弱目標(biāo)tbd,包含的主要貢獻(xiàn)與創(chuàng)新體現(xiàn)在:第一,建立了影響區(qū)域重疊的圖像目標(biāo)的疊加傳感器觀測(cè)模型,導(dǎo)出了對(duì)應(yīng)的多目標(biāo)觀測(cè)似然函數(shù);第二,基于建立的模型,將mahler提出的近似疊加phd(approximationsuperpositionalphd,as-phd)濾波器引入圖像目標(biāo)跟蹤框架,對(duì)as-phd濾波器的狀態(tài)空間進(jìn)行加標(biāo)簽處理,提出了加標(biāo)簽as-phd濾波器,利用smc技術(shù),提出了加標(biāo)簽as-phd濾波器的粒子實(shí)現(xiàn),解決低信噪比下影響區(qū)域重疊的圖像多弱目標(biāo)跟蹤問(wèn)題。仿真實(shí)驗(yàn)驗(yàn)證了所提算法的有效性。第六章對(duì)基于隨機(jī)有限集的濾波器處理復(fù)雜多目標(biāo)跟蹤問(wèn)題時(shí)所能達(dá)到的性能下界及其計(jì)算實(shí)現(xiàn)問(wèn)題開(kāi)展研究。主要貢獻(xiàn)為:第一,推導(dǎo)出了隨機(jī)集框架下能適應(yīng)目標(biāo)數(shù)目未知可變、檢測(cè)不確定、觀測(cè)源不確定、數(shù)據(jù)關(guān)聯(lián)不確定出現(xiàn)的復(fù)雜多目標(biāo)跟蹤問(wèn)題的多目標(biāo)pcrlb(multi-targetpcrlb,mt-pcrlb),及其遞推計(jì)算表達(dá)式,用以獲取多目標(biāo)跟蹤算法處理此類問(wèn)題的性能下界;第二,基于IL-P-PHD濾波器獲取的多目標(biāo)航跡,提出了一種高精度的獲取多目標(biāo)航跡和觀測(cè)集間關(guān)聯(lián)關(guān)系的數(shù)據(jù)關(guān)聯(lián)新方法;第三,基于獲取的多目標(biāo)航跡和數(shù)據(jù)關(guān)聯(lián)新方法,導(dǎo)出了評(píng)估典型雷達(dá)多目標(biāo)跟蹤問(wèn)題性能下界的MT-PCRLB的具體表達(dá)式。此外,該性能下界可以與目前流行的加標(biāo)簽隨機(jī)集濾波器配套使用,基于加標(biāo)簽隨機(jī)集濾波器獲取的多目標(biāo)航跡及觀測(cè)集與航跡的關(guān)聯(lián)關(guān)系,可以實(shí)現(xiàn)MT-PCRLB的遞推計(jì)算。仿真實(shí)驗(yàn)表明,提出的MT-PCRLB確能定量地衡量處理復(fù)雜多目標(biāo)跟蹤問(wèn)題的多目標(biāo)跟蹤算法所能達(dá)到的性能下界。第七章總結(jié)全文,并指出了下一步可能的研究方向。
[Abstract]:The main task of multi target tracking is based on noisy data from sensor to joint estimation of target number and its state of motion or motion tracking, multiple target tracking algorithm is stable and efficient is the core system of multi target tracking and multiple target tracking technology, is also the starting point of the research and the pursuit of the goal. At present, multiple target tracking technology is moving can deal with unknown target number variable, detection uncertainty, observation source uncertainty, data association uncertainty complex multi-target tracking problem of vigorous development, which is based on the random finite set especially Ronald proposed by Mahler (Random Finite Set, RFS) for a class of multi target tracking the method has the natural adaptability to the complex scenes, without the need for complex data processing can be carried out joint detection and tracking of multiple targets in a number of unknown and time is the biggest advantage of this tracking algorithm. Provides a new way to solve complex problem of multi target tracking multiple targets RFS tracking algorithm for targets containing surveillance and defense, unmanned robot, remote sensing, computer vision, biomedicine, modern communication based on the field, is a new direction for the development of multi target tracking technology. This research mainly focuses on the selection of random finite set under the framework of joint multi sensor multi target state estimation bias and track technology, random set filter extraction technology, random set filter multi target tracking based on image multi weak targets technology, random set framework of tracking before detection (Track-Before-Detect, TBD) and random set filter posterior Clarke (Posterior Cramer-Rao Lower Bound Rao lower bound, PCRLB) performance evaluation technology of the five studies in-depth study, the main results are as follows: chapter second presents a hierarchical point process and multi group multi-objective probability hypothesis density (Multi-group Multi-target Probability Hypothesis Density, MGMT-PHD) combined with multi sensor and multi bias filter an algorithm of target state estimation. The algorithm of multi-sensor deviation modeling process of multiple target state in the father, is associated with multiple sensor bias associated sub process, through the separate two interacting point processes, can avoid the high dimensional augmented state estimation of the large amount of calculation. To solve the problem of multi sensor joint estimation bias and multi target state in the use of MGMT-PHD filter, due to a number of multi sensor error is the number of sensors, the parent process the number of elements known, and a plurality of sensors that collect independent observation, observation set segmentation is clear, put forward the realization form of MGMT-PHD filter the particles for the combined multi sensor deviation under the condition of nonlinear and multi target state estimation. The simulation experiments consider a typical complex multi-sensor and multi-target scene with the appearance of the target, the disappearance of the target and the crossover of the target track. The validity of the algorithm is verified. The third chapter solves the problem of fast detection, recognition and stabilization of the target and the decoys in the terminal guided Active Radar Seeker under the condition of longitudinal resolution. The main contributions are as follows: first, the particle labelling of existing PHD (Labeled Particle PHD, L-P-PHD) some limitations of the existence of the filter is improved, an improved L-P-PHD (Improved L-P-PHD IL-P-PHD) filter; second, combined with the existing technology of multi model, which can simultaneously on multiple maneuvering target tracking and track maintenance of multimode il-p-phd the (multiplemodelil-p-phd, mm-il-p-phd) filter; finally, based on the mm-il-p-phd filter, combined with the characteristics of the existence of interference echo amplitude detection method and the confrontation scene feature information based on the establishment of a joint rapid detection, carrier and decoy stable tracking and recognition processing frame longitudinal distance separable. Simulation results show that the proposed method can effectively realize the rapid detection, carrier aircraft and decoy longitudinal distance separable stable tracking and recognition. In the fourth chapter, multigroup target is modeled as a hierarchical point process. A new algorithm based on stochastic finite set is proposed. It can jointly estimate the number of group targets, estimate the motion state of group centers and components within clusters, and extract group center tracks. The basic idea and relates to the main work and contribution are as follows: first, the target can be divided into PhD (unresolvedtargetphd, ut-phd) filter observation update process in detail, gives the calculation method of ut-phd filter observation update equation, the ut-phd filter with label processing, ut-phd filter is realized by sequential Monte Carlo technology, proposed tagged particle ut-phd (labeledparticleut-phd, l-p-ut-phd) filter, l-p-ut-phd filter can estimate the number of target multi group and multi group target center state by trajectory take multi group target center, implementation of joint detection and tracking of multiple group target center; second, group center state estimation results is presented. A more accurate segmentation algorithm based on the observation set, complete observation set segmentation, the segmentation results will be the observation set, single particle distribution corresponding to each pH group target The D (single-groupparticlephd, sg-p-phd) filter completes the state tracking and number estimation of components in the cluster, and returns the estimation results of group components to l-p-ut-phd filters. The simulation results show that the proposed method can effectively detect the appearance and disappearance of group targets, estimate the motion state of group centers, get the track of group center, and estimate the motion state and component number of components in the cluster. In the fifth chapter, the image multi weak target TBD technology, which affects the region does not overlap and affects the overlap of the region, is studied. The standard phd-tbd algorithm has a long delay in finding the new target, and the problem of the number of target numbers and the fluctuation of the target number.
【學(xué)位授予單位】:國(guó)防科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN713


本文編號(hào):1344359

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1344359.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a16c4***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
欧美日韩综合在线精品| 久久精品亚洲精品国产欧美| 日韩一区二区三区免费av| 日本淫片一区二区三区| 亚洲中文字幕人妻av| 国产一区二区三区免费福利| 深夜福利欲求不满的人妻| 少妇特黄av一区二区三区| 十八禁日本一区二区三区| 日本男人女人干逼视频| 日本一品道在线免费观看| 欧美日韩最近中国黄片| 国产午夜精品福利免费不| 嫩呦国产一区二区三区av| 麻豆国产精品一区二区| 久久人人爽人人爽大片av| 国产精品国产亚洲区久久| 激情国产白嫩美女在线观看| 日本人妻精品中文字幕不卡乱码| 人妻少妇系列中文字幕| 欧美日韩国产综合特黄| 少妇一区二区三区精品| 亚洲一区二区三区熟女少妇| 亚洲美女国产精品久久| 福利专区 久久精品午夜| 麻豆剧果冻传媒一二三区| 国产精品夜色一区二区三区不卡| 国产熟女一区二区三区四区| 免费啪视频免费欧美亚洲| 大香蕉久草网一区二区三区| 亚洲精品欧美精品日韩精品| 人人妻人人澡人人夜夜| 日韩精品人妻少妇一区二区| 中文字幕一二区在线观看| 中文字幕日韩欧美理伦片| 亚洲熟妇熟女久久精品 | 日韩精品一区二区不卡| 国产一区欧美一区二区| 日本高清加勒比免费在线| 午夜福利在线观看免费| 91偷拍裸体一区二区三区|