不同Bt蛋白對三種天敵的安全性評價及天敵人工飼料配方的改進
發(fā)布時間:2021-12-18 15:41
為防治經(jīng)濟作物害蟲,轉(zhuǎn)基因作物在全世界范圍內(nèi)得以廣泛種植。由于生物多樣性與環(huán)境安全和農(nóng)業(yè)的可持續(xù)發(fā)展同等重要,轉(zhuǎn)基因作物對生態(tài)系統(tǒng)內(nèi)生物多樣性的安全問題引起了廣泛關(guān)注。生物多樣性在維持生態(tài)系統(tǒng)平衡中扮演著重要角色。為避免對生態(tài)系統(tǒng)造成不可估量的影響,轉(zhuǎn)基因作物對生物多樣性影響的評估很有必要。人工飼料是生物安全評價的一種有效方法。因此用Bt毒素摻入人工飼料的方法對關(guān)鍵性捕食昆蟲的生物安全進行評價。另外,農(nóng)業(yè)可持續(xù)發(fā)展和溫室生產(chǎn)技術(shù)促使生物防治在IPM中的地位日益升高。人工飼料可以對捕食性昆蟲快速有效的大規(guī)模飼養(yǎng),是滿足生物防治應(yīng)用要求的關(guān)鍵因子。提高轉(zhuǎn)基因作物及其產(chǎn)品的安全性和生物防治在轉(zhuǎn)基因作物間的長期有效性是目前研究的焦點。目前的研究中,大草蛉、龜紋瓢蟲、異色瓢蟲的人工飼料得以開發(fā)以及在轉(zhuǎn)Bt基因作物的生物安全性評價中得以應(yīng)用,人工飼料同樣應(yīng)用于關(guān)鍵性捕食昆蟲的大規(guī)模飼養(yǎng)技術(shù)以促進生物防治的大量應(yīng)用。1.開發(fā)出大草蛉的4種人工飼料,并用于草蛉的幼期發(fā)育研究。大草蛉取食其中2種飼料的存活率超過80%。隨后利用人工飼料評價了8種Bt蛋白(CrylAb, CrylAc, CrylCa, C...
【文章來源】:中國農(nóng)業(yè)科學(xué)院北京市
【文章頁數(shù)】:146 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
ABSTRACT
ABBREVIATION
CHAPTERⅠ Introduction
1.1 Insect and human being
1.2 Insect as noxious pests or natural enemies of pests
1.3 Biodiversity and environment
1.3.1 Biological control agents
1.3.1.1 Chrysopids
1.3.1.2 Predatory Coccinelids
1.4 Predators and their artificial diet
1.4.1 Nutritional requirements and artificial diet development of Chrysopids and Coccinellids
1.4.1.1 Factitious prey
1.4.1.2 Artificial diet
1.5. Insect Resistant genetically modified crops
1.6 Bacillus thuringiensis
1.6.1 Bt toxins; a diverse and large family of insecticidal proteins
1.6.2 Mode ofaction of Bt toxins
1.7 Global adoption of genetically engineered crops
1.8 Development and adoption of transgenic crops in China
1.9 Insect resistant genetically engineered crops and non-target organisms
1.10 Biological control of insect pests
1.11 Types of Biological control
1.12 Trends and challenges in mass rearing of BCAs for commercial augmentative biological control:the current state of play
CHAPTER Ⅱ Development of artificial diet for Chrysopa pallens to improve rearing techniques
2.1 Introduction
2.2 Material and methods
2.2.1. Insects
2.3 Development of Artificial Diet for C. Pallens
2.3.1 Artificial diet for immature C. pallens
2.3.2 Artificial diet for C.pallens Adult
2.3.2.1 Artificial Diet 1
2.3.2.2 Artificial diet 2
2.4 Artificial diets fitness Bioassay
2.5 Results
2.5.1 Fitness suitability of artificial diets
2.5.2 Rearing of C. pallens adult on artificial diet
2.6 Discussion
Chapter Ⅲ Dietary exposure test design to study the impact of Bt proteins on immature C.pallens
3.1 Introduction
3.1.1 Insect culture
3.1.2 Insecticidal compounds
3.1.3 ELISA Kits
3.1.4 Preparation of Wash buffer and Extraction buffer
3.1.5 Dilution of Bt proteins and preparation of standard solution
3.1.6 Determination of LC_(50) and bioactivity of Bt proteins
3.1.7 Artificial diet for H. armigera
3.2 Artificial diet fitness bioassay
3.3 Validity of dietary exposure test design
3.4 Toxicity of Cry proteins to immature C. pallens
3.5 Stability of Cry proteins in the artificial diet
3.6 Bt protein bioactivity verification bioassay
3.7 Uptake of Cry proteins by C. pallens larvae
3.8 Statistical analyses
3.9 Result
3.9.1 LC_(50) of Bt proteins
3.9.2. Artificial diet fitness bioassay
3.9.3 Validity of dietary exposure test
3.9.4. Toxic impact of Cry proteins on the survival and development of immature C. pallens
3.9.5 Ingestion of Cry proteins by C. pallens
3.9.6 Stability of Bt proteins in artificial diet
3.9.7 Bio-activity of Bt proteins in artificial diets
3.10 Discussion
Chapter Ⅳ Environmental risk assessment of vegetative insecticidal protein on great lacewing Chrysopa pallens
4.1 Introduction
4.2 Materials and methods
4.2.1 Insect culture
4.2.2 Insecticidal compounds
4.2.3 ELISA Kits
4.2.4 Bioactivity of Bt proteins
4.3 Toxicity bioassay on C. pallens larvae
4.4 Toxicity evaluation bioassay on C. pallens Adult
4.5 Stability and bioactivity of Vip3Aa in artificial diet
4.5.1 ELISA analyses
4.5.2 Susceptible-insect bioassay
4.6 Data analyses
4.7 Results
4.7.1 Toxic impact of Vip3Aa on immature C. pallens
4.7.2 Effects of Vip3Aa on life-table parameters of adult C. pallens
4.7.3 Ingestion of Bt proteins by C. pallens
4.7.4 Stability of Vip3Aa in artificial diet
4.7.5 Bioactivity verification of Vip3Aa
4.8 Discussion
Chapter Ⅴ Dietary exposure pathway proves, that Cry1Ac, Cry1F and Cry2Ab expressing insect resistantgenetically engineered crops do not afflict adult lacewing Chrysopa pallens
5.1 Introduction
5.2 Materials and methods
5.2.1 Arthropod culture
5.2.2 Insecticidal compounds
5.2.3 Artificial diet for adult C. pallens
5.2.4 Cry proteins exposure to C. pallens adults
5.2.5 Intake of Cry1Ac, Cry1F and cry2Ab by adult Chrysopa pallens
5.2.6 Stability of Cry proteins in artificial diet
5.2.7 Bioactivity verification bioassay
5.2.8 Data analyses
5.3. Results
5.3.1 Effects of Cry1Ac, Cry1F and Cry2Ab on life-table parameters of adult C. pallens
5.3.2 Intake of Cry proteins by C. pallens
5.3.3 Stability of Cry proteins in artificial diet
5.3.4 Bioactivity of Cry proteins in artificial diet
5.4. Discussion
Chapter Ⅵ Artificial diet Development for Propylea japonica and Harmonia axyridis and its effects on reproductiveperformance of emerged-adults
6.1 Introduction
6.2 Materials and methods
6.2.1. Insects
6.2.2. Artificial diet
6.2.3 Immature survival and development
6.2.4 Survival and reproductive performance of adults
6.2.5 Comparison of artificial diets with pea aphid and E. kuehniella eggs
6.2.6 Statistical analysis
6.3. Results
6.3.1. Immature survival and development
6.3.2 Adult survival and reproductive performance on different diets
6.4. Discussion
Chapter Ⅶ Biosafety evaluation of Bt proteins on Immature Harmonia axyridis and Propylea japonica
7.1 Introduction
7.2 Materials and Methods
7.2.1 Insects
7.2.2 Insecticidal compounds
7.2.3 Artificial diet
7.3 Validity of dietary exposure Bioassay
7.4 Dietary exposure test
7.5 Vip3Aa, Cry1Ca and Cry1F concentrations in adult emerged from larvae fed artificial diet
7.6 Stability and Bioactivity of Vip3Aa, Cry1Ca and Cry1F in artificial diet
7.6.1 ELISA Analyses
7.6.2. Sensitive-insect bioassay
7.7 Data analyses
7.8 Result
7.8.1 Validation of dietary test design
7.8.2 Toxic impact of Vip3Aa, Cry1Ca and Cry1Fa on Harmonia axyridis and P. japonica
7.8.3 Stability and bioactivity confirmation test for Vip3Aa, Cry1Ca and Cry1F in artificial diet
7.8.4 Vip3Aa, Cry1Ca and Cry1F concentration measurements in emerged adults
7.8.5 Bt protein bioactivity verification bioassay
7.9 Discussion
CONCLUSION
References
Acknowledgement
Curriculum Vitae
【參考文獻】:
期刊論文
[1]大草蛉幼蟲對煙粉虱的捕食功能反應(yīng)及捕食行為觀察[J]. 劉爽,王甦,劉佰明,周長青,張帆. 中國農(nóng)業(yè)科學(xué). 2011(06)
[2]大草蛉對桃蚜和夾竹桃蚜的捕食作用研究[J]. 趙琴,陳婧,劉鳳想,肖文芳,彭宇. 環(huán)境昆蟲學(xué)報. 2008(03)
[3]龜紋瓢蟲生物生態(tài)學(xué)特性及飼養(yǎng)利用研究進展[J]. 張世澤,仵均祥,張強,姜軍俠,許向利,陳繼安. 干旱地區(qū)農(nóng)業(yè)研究. 2004(04)
[4]有益瓢蟲的生防利用研究概述[J]. 荊英,黃建,黃蓬英. 山西農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版). 2002(04)
[5]蘇云金桿菌vip3 A基因的克隆、表達及殺蟲活性分析[J]. 陳建武,唐麗霞,湯慕瑾,師永霞,龐義. 生物工程學(xué)報. 2002(06)
[6]三種飼料對異色瓢蟲和龜紋瓢蟲的飼喂效果[J]. 郭建英,萬方浩. 中國生物防治. 2001(03)
[7]中國食蚧瓢蟲名錄[J]. 曾濤,龐虹. 昆蟲天敵. 2000(02)
[8]海南島瓢蟲名錄[J]. 彭正強,龐虹,任順祥,金啟安. 昆蟲天敵. 1997(03)
[9]異色瓢蟲生物學(xué)特性觀察[J]. 何繼龍,馬恩沛,沈允昌,陳文龍,孫興全. 上海農(nóng)學(xué)院學(xué)報. 1994(02)
[10]棉鈴蟲人工飼料的研究[J]. 卓樂姒,黃月蘭,楊家榮. 昆蟲學(xué)報. 1981(01)
本文編號:3542697
【文章來源】:中國農(nóng)業(yè)科學(xué)院北京市
【文章頁數(shù)】:146 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
ABSTRACT
ABBREVIATION
CHAPTERⅠ Introduction
1.1 Insect and human being
1.2 Insect as noxious pests or natural enemies of pests
1.3 Biodiversity and environment
1.3.1 Biological control agents
1.3.1.1 Chrysopids
1.3.1.2 Predatory Coccinelids
1.4 Predators and their artificial diet
1.4.1 Nutritional requirements and artificial diet development of Chrysopids and Coccinellids
1.4.1.1 Factitious prey
1.4.1.2 Artificial diet
1.5. Insect Resistant genetically modified crops
1.6 Bacillus thuringiensis
1.6.1 Bt toxins; a diverse and large family of insecticidal proteins
1.6.2 Mode ofaction of Bt toxins
1.7 Global adoption of genetically engineered crops
1.8 Development and adoption of transgenic crops in China
1.9 Insect resistant genetically engineered crops and non-target organisms
1.10 Biological control of insect pests
1.11 Types of Biological control
1.12 Trends and challenges in mass rearing of BCAs for commercial augmentative biological control:the current state of play
CHAPTER Ⅱ Development of artificial diet for Chrysopa pallens to improve rearing techniques
2.1 Introduction
2.2 Material and methods
2.2.1. Insects
2.3 Development of Artificial Diet for C. Pallens
2.3.1 Artificial diet for immature C. pallens
2.3.2 Artificial diet for C.pallens Adult
2.3.2.1 Artificial Diet 1
2.3.2.2 Artificial diet 2
2.4 Artificial diets fitness Bioassay
2.5 Results
2.5.1 Fitness suitability of artificial diets
2.5.2 Rearing of C. pallens adult on artificial diet
2.6 Discussion
Chapter Ⅲ Dietary exposure test design to study the impact of Bt proteins on immature C.pallens
3.1 Introduction
3.1.1 Insect culture
3.1.2 Insecticidal compounds
3.1.3 ELISA Kits
3.1.4 Preparation of Wash buffer and Extraction buffer
3.1.5 Dilution of Bt proteins and preparation of standard solution
3.1.6 Determination of LC_(50) and bioactivity of Bt proteins
3.1.7 Artificial diet for H. armigera
3.2 Artificial diet fitness bioassay
3.3 Validity of dietary exposure test design
3.4 Toxicity of Cry proteins to immature C. pallens
3.5 Stability of Cry proteins in the artificial diet
3.6 Bt protein bioactivity verification bioassay
3.7 Uptake of Cry proteins by C. pallens larvae
3.8 Statistical analyses
3.9 Result
3.9.1 LC_(50) of Bt proteins
3.9.2. Artificial diet fitness bioassay
3.9.3 Validity of dietary exposure test
3.9.4. Toxic impact of Cry proteins on the survival and development of immature C. pallens
3.9.5 Ingestion of Cry proteins by C. pallens
3.9.6 Stability of Bt proteins in artificial diet
3.9.7 Bio-activity of Bt proteins in artificial diets
3.10 Discussion
Chapter Ⅳ Environmental risk assessment of vegetative insecticidal protein on great lacewing Chrysopa pallens
4.1 Introduction
4.2 Materials and methods
4.2.1 Insect culture
4.2.2 Insecticidal compounds
4.2.3 ELISA Kits
4.2.4 Bioactivity of Bt proteins
4.3 Toxicity bioassay on C. pallens larvae
4.4 Toxicity evaluation bioassay on C. pallens Adult
4.5 Stability and bioactivity of Vip3Aa in artificial diet
4.5.1 ELISA analyses
4.5.2 Susceptible-insect bioassay
4.6 Data analyses
4.7 Results
4.7.1 Toxic impact of Vip3Aa on immature C. pallens
4.7.2 Effects of Vip3Aa on life-table parameters of adult C. pallens
4.7.3 Ingestion of Bt proteins by C. pallens
4.7.4 Stability of Vip3Aa in artificial diet
4.7.5 Bioactivity verification of Vip3Aa
4.8 Discussion
Chapter Ⅴ Dietary exposure pathway proves, that Cry1Ac, Cry1F and Cry2Ab expressing insect resistantgenetically engineered crops do not afflict adult lacewing Chrysopa pallens
5.1 Introduction
5.2 Materials and methods
5.2.1 Arthropod culture
5.2.2 Insecticidal compounds
5.2.3 Artificial diet for adult C. pallens
5.2.4 Cry proteins exposure to C. pallens adults
5.2.5 Intake of Cry1Ac, Cry1F and cry2Ab by adult Chrysopa pallens
5.2.6 Stability of Cry proteins in artificial diet
5.2.7 Bioactivity verification bioassay
5.2.8 Data analyses
5.3. Results
5.3.1 Effects of Cry1Ac, Cry1F and Cry2Ab on life-table parameters of adult C. pallens
5.3.2 Intake of Cry proteins by C. pallens
5.3.3 Stability of Cry proteins in artificial diet
5.3.4 Bioactivity of Cry proteins in artificial diet
5.4. Discussion
Chapter Ⅵ Artificial diet Development for Propylea japonica and Harmonia axyridis and its effects on reproductiveperformance of emerged-adults
6.1 Introduction
6.2 Materials and methods
6.2.1. Insects
6.2.2. Artificial diet
6.2.3 Immature survival and development
6.2.4 Survival and reproductive performance of adults
6.2.5 Comparison of artificial diets with pea aphid and E. kuehniella eggs
6.2.6 Statistical analysis
6.3. Results
6.3.1. Immature survival and development
6.3.2 Adult survival and reproductive performance on different diets
6.4. Discussion
Chapter Ⅶ Biosafety evaluation of Bt proteins on Immature Harmonia axyridis and Propylea japonica
7.1 Introduction
7.2 Materials and Methods
7.2.1 Insects
7.2.2 Insecticidal compounds
7.2.3 Artificial diet
7.3 Validity of dietary exposure Bioassay
7.4 Dietary exposure test
7.5 Vip3Aa, Cry1Ca and Cry1F concentrations in adult emerged from larvae fed artificial diet
7.6 Stability and Bioactivity of Vip3Aa, Cry1Ca and Cry1F in artificial diet
7.6.1 ELISA Analyses
7.6.2. Sensitive-insect bioassay
7.7 Data analyses
7.8 Result
7.8.1 Validation of dietary test design
7.8.2 Toxic impact of Vip3Aa, Cry1Ca and Cry1Fa on Harmonia axyridis and P. japonica
7.8.3 Stability and bioactivity confirmation test for Vip3Aa, Cry1Ca and Cry1F in artificial diet
7.8.4 Vip3Aa, Cry1Ca and Cry1F concentration measurements in emerged adults
7.8.5 Bt protein bioactivity verification bioassay
7.9 Discussion
CONCLUSION
References
Acknowledgement
Curriculum Vitae
【參考文獻】:
期刊論文
[1]大草蛉幼蟲對煙粉虱的捕食功能反應(yīng)及捕食行為觀察[J]. 劉爽,王甦,劉佰明,周長青,張帆. 中國農(nóng)業(yè)科學(xué). 2011(06)
[2]大草蛉對桃蚜和夾竹桃蚜的捕食作用研究[J]. 趙琴,陳婧,劉鳳想,肖文芳,彭宇. 環(huán)境昆蟲學(xué)報. 2008(03)
[3]龜紋瓢蟲生物生態(tài)學(xué)特性及飼養(yǎng)利用研究進展[J]. 張世澤,仵均祥,張強,姜軍俠,許向利,陳繼安. 干旱地區(qū)農(nóng)業(yè)研究. 2004(04)
[4]有益瓢蟲的生防利用研究概述[J]. 荊英,黃建,黃蓬英. 山西農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版). 2002(04)
[5]蘇云金桿菌vip3 A基因的克隆、表達及殺蟲活性分析[J]. 陳建武,唐麗霞,湯慕瑾,師永霞,龐義. 生物工程學(xué)報. 2002(06)
[6]三種飼料對異色瓢蟲和龜紋瓢蟲的飼喂效果[J]. 郭建英,萬方浩. 中國生物防治. 2001(03)
[7]中國食蚧瓢蟲名錄[J]. 曾濤,龐虹. 昆蟲天敵. 2000(02)
[8]海南島瓢蟲名錄[J]. 彭正強,龐虹,任順祥,金啟安. 昆蟲天敵. 1997(03)
[9]異色瓢蟲生物學(xué)特性觀察[J]. 何繼龍,馬恩沛,沈允昌,陳文龍,孫興全. 上海農(nóng)學(xué)院學(xué)報. 1994(02)
[10]棉鈴蟲人工飼料的研究[J]. 卓樂姒,黃月蘭,楊家榮. 昆蟲學(xué)報. 1981(01)
本文編號:3542697
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/3542697.html
最近更新
教材專著