黃土高原土壤侵蝕與地貌形態(tài)耦合分析
文內(nèi)圖片:
圖片說(shuō)明:黃土高原及典型流域概略圖
[Abstract]:Soil erosion is the most serious environmental problem in the Loess Plateau, which is mainly divided into natural and human factors. The natural factors include climate, hydrology, topography, landforms, etc. The human factors mainly show the effects of human activities on soil erosion, including the positive and negative effects, such as the conversion of farmland to forests, the implementation of water and soil conservation measures, and so on. In this paper, the climatic and hydrological changes of the Loess Plateau in the near 50 years and its effect on the change of soil and water loss are studied in-depth, and the water system and the characteristics of the river network in the typical basin of the Loess Plateau are analyzed and analyzed, and the comprehensive index of erosion and physiognomy (ETI) is established. The coupling relation between soil erosion and geomorphic features is analyzed, and the effect of human activity on soil erosion is further analyzed. Through the comprehensive analysis of this paper, the main results are as follows: (1) There is a certain spatial difference between the physiognomy characteristic factor and each river basin, and the difference of the spatial difference is an important reason for the difference of soil and water loss, so as to realize the quantitative analysis of the landforms of the Loess Plateau. In this study, a comprehensive evaluation index (ETI) for geomorphologic features was established. There is a significant positive correlation between the comprehensive index of the physiognomy and the sediment concentration (P0.05), that is, the sediment concentration is increased with the increase of the comprehensive index of the feature of the landforms, and the characteristics of the geomorphic features are the important natural factors that affect the soil erosion in the Loess Plateau. It affects the occurrence and development of soil and water loss by controlling the condition of the underlying surface. At the same time, the slope of the regression equation between the comprehensive index of the physiognomy and the sediment variable between 2000 and 2011 is higher than that of other sediment transport variables. In the same condition as the comprehensive index of the physiognomy characteristics, the sediment transport variable of the year 2000 to 2011 will be less than that of the other year, that is, the sediment concentration is significantly reduced, This phenomenon shows that in the condition of relatively consistent precipitation, runoff and physiognomy characteristics, there are other non-natural factors, so that the sediment discharge in the Loess Plateau is significantly reduced since 2000, that is, the effect of human factors on soil erosion after 2000 in the Loess Plateau is becoming more and more obvious. (2) During the period from 1960 to 2011, the runoff and sediment concentration decreased from 1960 to 2011, and the annual runoff and sediment concentration decreased by 30% to 80% and 60% to 90%, respectively, in the period from 1960 to 2011. The average annual precipitation variation coefficient of each meteorological station is from 18.13% to 38.66%, so the precipitation is of medium variation in time. In the space, the precipitation presents an overall distribution pattern that is gradually reduced from the southeast to the northwest, but there is a spatial mutation in the area affected by the terrain. Although both precipitation and runoff show a tendency to decrease, there are differences in space and time in different regions. At the same time, the data analysis of the typical hydrological station shows that the variation of the precipitation and runoff in each station is basically consistent, which indicates that there is a correlation between the precipitation and the runoff in the Loess Plateau. There is a very significant linear positive correlation between the runoff and the sediment discharge in the Loess Plateau. The runoff is the key factor affecting the sediment transport, but it is not the only factor. (3) The cover degree of the vegetation in the Loess Plateau is increasing from 1981 to 2009, especially after 2000, the cover degree of the vegetation is growing rapidly, and the covering area is not only expanded, but the cover strength of the vegetation is also increasing. In the spatial distribution, the degree of vegetation cover decreases from the southeast to the northwest, increasing the rate since 2000. Compared with the data transmission data, it is found that there is a significant negative correlation between the increase of the vegetation cover degree and the reduction of the sediment transport, so the sediment discharge is reduced with the increase of the cover degree of the vegetation, and the regression equation is determined by the regression equation (R2 = 0.6). The change of vegetation cover degree is the main cause of the change of water and soil loss after 2000. In addition to the vegetation cover, the construction of the silt dam is an important factor to influence the change of soil and water loss in the Loess Plateau, and the construction of a large amount of silt in the Loess Plateau is the key reason for the reduction of the sediment discharge and the runoff, but the dynamic relationship between the silt and the sediment discharge is still to be studied further.
【學(xué)位授予單位】:中國(guó)科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:S157
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉欽普;美國(guó)土壤侵蝕治理的歷史、現(xiàn)狀和問(wèn)題[J];許昌師專學(xué)報(bào);2000年02期
2 王少軍,張志;湖北省丹江口市土壤侵蝕景觀形成機(jī)理[J];水土保持通報(bào);2001年05期
3 John.W.Peterson PE;美國(guó)控制土壤侵蝕的經(jīng)驗(yàn)[J];中國(guó)水土保持;2002年07期
4 Taro Uchida,Takahisa MiZuayma,Akitsu Kimoto ,Yuko Asano;中國(guó)東南部利用銫-137觀測(cè)荒坡土壤侵蝕的局限性[J];中國(guó)水土保持;2002年07期
5 楊勝天,朱啟疆,張衛(wèi)國(guó);應(yīng)用智能化遙感解譯方法監(jiān)測(cè)貴陽(yáng)市土壤侵蝕[J];中國(guó)水土保持;2002年07期
6 任兆選;美國(guó)土壤侵蝕實(shí)驗(yàn)室馬克博士來(lái)綏考察[J];中國(guó)水土保持;2002年08期
7 ;澳大利亞對(duì)土壤侵蝕的解釋[J];水土保持科技情報(bào);2002年03期
8 ;美國(guó)對(duì)土壤侵蝕的解釋[J];水土保持科技情報(bào);2002年03期
9 ;日本的土壤侵蝕概念與法規(guī)[J];水土保持科技情報(bào);2002年03期
10 ;土壤侵蝕[J];水土保持科技情報(bào);2002年04期
相關(guān)會(huì)議論文 前10條
1 謝婧;吳健生;王秀茹;鄭茂坤;;深圳市土地利用對(duì)土壤侵蝕的影響研究[A];中國(guó)地理學(xué)會(huì)百年慶典學(xué)術(shù)論文摘要集[C];2009年
2 何伯干;;福建晉江流域土壤侵蝕及其危害[A];第四屆全國(guó)工程地質(zhì)大會(huì)論文選集(一)[C];1992年
3 樊哲文;黃靈光;錢海燕;方豫;;鄱陽(yáng)湖流域土壤侵蝕的空間分異規(guī)律及影響因素分析[A];第十七屆中國(guó)遙感大會(huì)摘要集[C];2010年
4 蔡繼清;任志勇;李迎春;;土壤侵蝕遙感快速調(diào)查中有關(guān)技術(shù)問(wèn)題的商榷[A];全國(guó)第一屆水土保持監(jiān)測(cè)學(xué)術(shù)研討會(huì)論文集[C];2001年
5 馬為民;張劍波;田衛(wèi)堂;;紋理解譯標(biāo)志在土壤侵蝕遙感調(diào)查中的應(yīng)用[A];全國(guó)第一屆水土保持監(jiān)測(cè)學(xué)術(shù)研討會(huì)論文集[C];2001年
6 卓慕寧;李定強(qiáng);吳志峰;王繼增;劉平;;廣東省典型地區(qū)土壤侵蝕特征及防治對(duì)策[A];“全國(guó)水土流失與江河泥沙災(zāi)害及其防治對(duì)策”學(xué)術(shù)研討會(huì)會(huì)議文摘[C];2003年
7 黃毅;張玉龍;曹忠杰;高云彪;蔡景平;;遼寧省土壤侵蝕的變化趨勢(shì)及其防治對(duì)策[A];“全國(guó)水土流失與江河泥沙災(zāi)害及其防治對(duì)策”學(xué)術(shù)研討會(huì)會(huì)議文摘[C];2003年
8 雙瑞;雙書(shū)東;程煥玲;;河南省不同土壤侵蝕區(qū)主要侵蝕特征及防治措施與對(duì)策[A];“全國(guó)水土流失與江河泥沙災(zāi)害及其防治對(duì)策”學(xué)術(shù)研討會(huì)會(huì)議文摘[C];2003年
9 林敬蘭;楊學(xué)震;陳明華;;基于“3S”技術(shù)的福建省土壤侵蝕動(dòng)態(tài)監(jiān)測(cè)研究[A];中國(guó)水利學(xué)會(huì)首屆青年科技論壇論文集[C];2003年
10 趙春華;張學(xué)兵;楊開(kāi)望;史志華;王天巍;蔡崇法;丁樹(shù)文;;替代能源措施對(duì)三峽地區(qū)典型流域土壤侵蝕的影響[A];全國(guó)水土保持生態(tài)修復(fù)研討會(huì)論文匯編[C];2004年
相關(guān)重要報(bào)紙文章 前10條
1 記者 黃觀平;東莞土壤侵蝕59平方公里[N];東莞日?qǐng)?bào);2013年
2 記者 黃峰 通訊員 肖培青;土壤侵蝕快速調(diào)查與水土保持評(píng)估方法研究取得突破性進(jìn)展[N];黃河報(bào);2007年
3 楊旋;土壤侵蝕:觸目驚心的黑洞[N];中國(guó)國(guó)土資源報(bào);2010年
4 記者 鄭北鷹;“長(zhǎng)治”工程每年約減少土壤侵蝕2億噸[N];光明日?qǐng)?bào);2005年
5 記者 楊亞非;輕點(diǎn)鼠標(biāo)土壤侵蝕了然[N];人民長(zhǎng)江報(bào);2006年
6 記者 李力;我國(guó)年減少土壤侵蝕15億噸[N];經(jīng)濟(jì)日?qǐng)?bào);2006年
7 記者 李鋒德 李坤;遼寧全國(guó)首個(gè)完成高分辨率水土流失調(diào)查[N];中國(guó)水利報(bào);2007年
8 江西省水利廳;江西省第三次土壤侵蝕遙感調(diào)查結(jié)果[N];江西日?qǐng)?bào);2004年
9 遼寧省水利廳;遼寧省第四次土壤侵蝕遙感普查成果公報(bào)[N];遼寧日?qǐng)?bào);2007年
10 本報(bào)記者 屈遐;水土保持不宜多家管理[N];中國(guó)環(huán)境報(bào);2000年
相關(guān)博士學(xué)位論文 前10條
1 陜永杰;太湖流域典型地區(qū)土壤侵蝕特征及其環(huán)境效應(yīng)[D];南京大學(xué);2011年
2 王蕓;黃土高塬溝壑區(qū)硯瓦川流域徑流泥沙對(duì)氣候變化與人類活動(dòng)的響應(yīng)[D];西北農(nóng)林科技大學(xué);2015年
3 程楠楠;黃土高原土壤侵蝕與地貌形態(tài)耦合分析[D];中國(guó)科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心);2016年
4 陳少輝;遙感影像融合在土壤侵蝕分析中的模型研究[D];華中科技大學(xué);2007年
5 林惠花;典型區(qū)域土壤侵蝕的地理學(xué)分析[D];福建師范大學(xué);2009年
6 劉洋;岷江源頭區(qū)植被景觀與流域土壤侵蝕的動(dòng)態(tài)相關(guān)性[D];中國(guó)科學(xué)院研究生院(成都生物研究所);2007年
7 華麗;“人—自然”耦合下土壤侵蝕時(shí)空演變及其防治區(qū)劃應(yīng)用[D];華中農(nóng)業(yè)大學(xué);2013年
8 黃炎和;閩南地區(qū)的土壤侵蝕與治理[D];福建師范大學(xué);2001年
9 賈麗;基于CAESAR模型的土壤侵蝕研究[D];華東師范大學(xué);2008年
10 龐國(guó)偉;人為作用對(duì)土壤侵蝕環(huán)境影響的定量表征[D];中國(guó)科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心);2012年
相關(guān)碩士學(xué)位論文 前10條
1 楊澤;興縣土壤侵蝕及景觀格局研究[D];山西農(nóng)業(yè)大學(xué);2015年
2 尚書(shū);小流域土壤侵蝕評(píng)價(jià)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];北京林業(yè)大學(xué);2015年
3 韋安勝;秦嶺北麓面源污染風(fēng)險(xiǎn)評(píng)價(jià)[D];西北農(nóng)林科技大學(xué);2015年
4 許;;黃土區(qū)露天煤礦排土場(chǎng)土壤侵蝕治理效益研究[D];中國(guó)地質(zhì)大學(xué)(北京);2015年
5 閆帥;土壤侵蝕空間估算與土地利用調(diào)控研究[D];中國(guó)地質(zhì)大學(xué)(北京);2015年
6 苗連朋;黃土丘陵區(qū)典型流域植被與水沙變化響應(yīng)關(guān)系模型比較研究[D];西北農(nóng)林科技大學(xué);2015年
7 李耀軍;黃土高原土壤侵蝕時(shí)空變化及其對(duì)氣候變化的響應(yīng)[D];蘭州大學(xué);2015年
8 路彩玲;海原縣土地利用變化與土壤侵蝕關(guān)系研究[D];寧夏大學(xué);2015年
9 吳胡強(qiáng);大別山上舍小流域不同林分土壤侵蝕特征研究[D];南京林業(yè)大學(xué);2015年
10 宓瑩;云南大石壩水庫(kù)流域土壤侵蝕與沉積泥沙來(lái)源的關(guān)系研究[D];南京師范大學(xué);2015年
,本文編號(hào):2510937
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/2510937.html