基于可見(jiàn)-近紅外波段反射率估算表層土壤含水量
[Abstract]:Soil moisture content (soil moisture) is one of the main factors affecting plant growth and crop yield. Therefore, the effective and non-destructive monitoring of soil surface water content is of great significance to agricultural irrigation and crop growth. The water content and spectral reflectance data of four kinds of soil (sandy soil, loam, clay loam and sandy loam) were obtained by means of XRF and spectrometer, and the image information of these four kinds of soil was obtained by image method. The main results are as follows: First, spectral characteristic parameters: the sum of the reflectance of green side (coefficient R2 = 0.9m3 m-3) and the absorption depth of 780-970 nm (R2 = 0.9m3 m-3) and 780-970 nm absorption depth (R2 = 0. 31 and RMSE = 0. 11 m3 m-3), the maximum reflectance of 900-970 nm and the reflectivity of 900-970 nm (R2 = 0.992 and RMSE = 0. 05 m3 m-3). The maximum reflectivity of 900-970 nm (R2 = 0.886 and RMSE = 0. 03 m3 m-3) and 900-9600 nm integral (R2 = 0. 85 and RMSE = 0. 03 m3 m-3), and the total reflectance of 900-9600 nm and the reflectance of 900-970 nm (R2 = 0.987 and RMSE = 0.02m3 m-3) respectively estimate the soil moisture content estimation accuracy of sandy loam, loam, clay loam and sandy loam. The correlation of water content of different soil texture was estimated by the total reflectance (R2 = 0. 48 and RMSE = 0. 05 m3 m-3) and the total reflectance (R2 = 0. 47 and RMSE = 0. 05 m3 m-3). Artificial neural network (ANN) was used to improve soil moisture content (R2 = 0.995 and RMSE 0. 03 m3m-3). Secondly, soil with different soil texture was studied by TUNEL method, and the soil reflectance changes under different soil bulk density (soil volume) and soil moisture content were studied. The results show that the soil reflectance decreases with the increase of water content in different soil bulk density and soil texture (sandy soil, loam, clay loam and sandy loam). The estimation accuracy of soil reflectance is as follows: sandy soil (R2 = 0.979 and RMSE is 0. 05 m3m-3). loam (R2 = 0.991 and RMSE 0. 04 m3 m-3), clay loam (R2 = 0.988 and RMSE 0. 04 m3 m-3) and sandy loam (Rw2 = 0.886 and RMSE 0. 04 m3 m-3); The water content accuracy of the four soils was estimated to be R2 = 0.968 and RMSE 0. 07m3m-3. Thirdly, the image information of soil moisture content (LAI) under different bulk density is extracted and analyzed, including the brightness (Value, V representation), saturation (SSPS) and hue (Hue, H is denoted by H), and the estimation model of brightness and saturation is established. The results show that: 1) For sandy soil, when the bulk density of soil is 1. 50 g cm-3, the estimated model correlation is best (R2 = 0.882 and RMSE = 0. 05 m3m-3). For loam, when the soil bulk density is 1. 40 g cm-3, the estimated model correlation is best (R2 = 0.993 and RMSE = 0. 04 m3m-3); for clay loam, When the bulk density of soil is 1. 60 g cm-3, the correlation is best (R2 = 0.993 and RMSE = 0. 03 m3 m-3); for sandy loam, when its soil bulk density is 1. 60 g cm-3, the correlation is best (R2 = 0.987 and RMSE = 0. 01 m3 m-3); 2) Considering the change of soil bulk density, the estimation model of moisture content of clay loam is 1.89-0.72mv-1.50m-S (R2 = 0. 72 and 6 m3m-3). R2 = 0. 70 and RMSE = 0.07m3 m-3 in loam, R2 = 0.970 and RMSE = 0.07m3 m-3 in sandy loam, R2 = 0.960 and RMSE = 0.07m3m-3 in sandy loam. Artificial neural network (ANN) can improve soil moisture content of four kinds of soil texture better. The accuracy of sand estimation model is R2 = 0.967 and RMSE is 0.07m3m-3. The loam is R2 = 0.979 and RMSE is 0.07m3m-3; clay loam is R2 = 0.882 and RMSE is 0.07m3m-3; sandy loam is R2 = 0.888 and RMSE is 0. 05m3m-3. To sum up, the reflectance and soil color information of the surface water content of four kinds of soil under different soil bulk density were obtained by the method of TUNEL, spectrometer and image method, and the regression model between them and the soil was established on the basis of soil reflectance and image information. This paper analyzes and compares the three methods to estimate the accuracy of the model. The results show that the accuracy and the order of the soil texture (sandy soil, loam, clay loam and sandy loam) in different soil texture and soil texture (sandy soil, loam, clay loam and sandy loam) are as follows: The artificial neural network can improve the measurement precision of soil moisture content.
【學(xué)位授予單位】:中國(guó)農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:S152.7
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李美婷;武紅旗;蔣平安;盧響軍;付彥博;;利用土壤的近紅外光譜特征測(cè)定土壤含水量[J];光譜學(xué)與光譜分析;2012年08期
2 朱鶴健;;栽培冬作物時(shí)土壤的鎮(zhèn)壓(摘要)[J];西北農(nóng)業(yè)科學(xué);1958年01期
3 洪重光;硫酸注射法快速測(cè)定土壤含水量[J];土壤通報(bào);1960年02期
4 ;怎樣測(cè)定土壤含水量[J];農(nóng)田水利;1960年04期
5 孫福廷;電阻值法測(cè)土壤含水量[J];吉林水利;2002年07期
6 張成才,吳澤寧,余弘婧;遙感計(jì)算土壤含水量方法的比較研究[J];灌溉排水學(xué)報(bào);2004年02期
7 左玉萍,賈志寬;土壤含水量對(duì)秸稈分解的影響及動(dòng)態(tài)變化[J];西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年05期
8 張學(xué)禮,胡振琪,初士立;土壤含水量測(cè)定方法研究進(jìn)展[J];土壤通報(bào);2005年01期
9 徐玉英;土壤含水量計(jì)算方法[J];東北水利水電;2005年07期
10 謝恒星;張振華;劉繼龍;譚春英;李清翠;;蘋(píng)果園土壤含水量測(cè)定取樣點(diǎn)數(shù)目及插值方法研究[J];萊陽(yáng)農(nóng)學(xué)院學(xué)報(bào);2005年04期
相關(guān)會(huì)議論文 前10條
1 王二虎;仝文偉;魯建立;霍繼超;王娟;;暴雨過(guò)程對(duì)不同深度土壤含水量的影響分析[A];第27屆中國(guó)氣象學(xué)會(huì)年會(huì)現(xiàn)代農(nóng)業(yè)氣象防災(zāi)減災(zāi)與糧食安全分會(huì)場(chǎng)論文集[C];2010年
2 王春梅;左強(qiáng);楊鶴松;;應(yīng)用隨機(jī)組合方法分析不同尺度表層土壤含水量合理取樣數(shù)目[A];農(nóng)業(yè)工程科技創(chuàng)新與建設(shè)現(xiàn)代農(nóng)業(yè)——2005年中國(guó)農(nóng)業(yè)工程學(xué)會(huì)學(xué)術(shù)年會(huì)論文集第二分冊(cè)[C];2005年
3 武紅旗;李美婷;蔣平安;盧響軍;付彥博;;北疆典型鹽漬土土壤含水量光譜特征研究[A];面向未來(lái)的土壤科學(xué)(上冊(cè))——中國(guó)土壤學(xué)會(huì)第十二次全國(guó)會(huì)員代表大會(huì)暨第九屆海峽兩岸土壤肥料學(xué)術(shù)交流研討會(huì)論文集[C];2012年
4 匡亞紅;陸桂華;吳志勇;;中國(guó)近60年模擬土壤含水量時(shí)空特征分析[A];中國(guó)水文科技新發(fā)展——2012中國(guó)水文學(xué)術(shù)討論會(huì)論文集[C];2012年
5 紀(jì)瑞鵬;班顯秀;張淑杰;張玉書(shū);馮銳;陳鵬獅;;基于遙感的農(nóng)田土壤含水量面預(yù)報(bào)方法研究[A];中國(guó)氣象學(xué)會(huì)2006年年會(huì)“衛(wèi)星遙感技術(shù)進(jìn)展及應(yīng)用”分會(huì)場(chǎng)論文集[C];2006年
6 楊云貴;寇建村;趙昆;;土壤含水量對(duì)草坪草出苗和早期生長(zhǎng)的影響[A];草坪與地被科學(xué)進(jìn)展論文匯編[C];2006年
7 鄒洪濤;黃毅;張玉龍;孫占祥;;東北風(fēng)沙半干旱區(qū)不同栽培模式春播前土壤墑情變化的研究[A];中國(guó)農(nóng)作制度研究進(jìn)展2008[C];2008年
8 顧靜;;西安地區(qū)麥地不同降水年份土壤含水量研究[A];中國(guó)地理學(xué)會(huì)2007年學(xué)術(shù)年會(huì)論文摘要集[C];2007年
9 張素芳;馬禮;;壩上高原林草地表層土壤含水量對(duì)比研究[A];自然地理學(xué)與生態(tài)安全學(xué)術(shù)論文摘要集[C];2012年
10 王學(xué)軍;李懷耿;崔少君;;土壤含水量監(jiān)測(cè)與智能灌溉系統(tǒng)應(yīng)用研究[A];濟(jì)寧市技術(shù)創(chuàng)新與可持續(xù)發(fā)展論文選編[C];2005年
相關(guān)重要報(bào)紙文章 前10條
1 記者 劉凱;挖掘灌溉潛力 打贏抗旱戰(zhàn)役[N];運(yùn)城日?qǐng)?bào);2009年
2 瞿可;內(nèi)澇地小麥這樣種[N];農(nóng)民日?qǐng)?bào);2003年
3 趙永春;農(nóng)田保墑是關(guān)鍵[N];沈陽(yáng)日?qǐng)?bào);2006年
4 府谷縣園藝站 郝里子;旱作果園咋保墑[N];陜西科技報(bào);2008年
5 記者 張梅 實(shí)習(xí)生 顏薇;我省部分地區(qū)旱情持續(xù)[N];陜西日?qǐng)?bào);2009年
6 記者 李寧波;一場(chǎng)雨雪潤(rùn)了干渴運(yùn)城[N];山西日?qǐng)?bào);2009年
7 周鴻彩;天麻的生殖特性[N];云南科技報(bào);2008年
8 記者 許怡平;全市旱情基本解除[N];安慶日?qǐng)?bào);2011年
9 楊建輝;華池伏旱加劇 45萬(wàn)畝大秋作物面臨威脅[N];甘肅經(jīng)濟(jì)日?qǐng)?bào);2007年
10 正定縣農(nóng)牧局 劉麗云;小麥遇大旱 春季巧施肥[N];河北科技報(bào);2009年
相關(guān)博士學(xué)位論文 前5條
1 刁萬(wàn)英;基于可見(jiàn)-近紅外波段反射率估算表層土壤含水量[D];中國(guó)農(nóng)業(yè)大學(xué);2016年
2 魯清林;旱地小麥不同種植模式水熱效應(yīng)及對(duì)產(chǎn)量形成的影響[D];甘肅農(nóng)業(yè)大學(xué);2014年
3 王立權(quán);雪被—農(nóng)田土壤復(fù)合系統(tǒng)復(fù)雜性分析及水熱互作效應(yīng)研究[D];東北農(nóng)業(yè)大學(xué);2014年
4 陳俊英;污灌土壤斥水性的機(jī)理研究[D];西北農(nóng)林科技大學(xué);2010年
5 周萍;高光譜土壤成分信息的量化反演[D];中國(guó)地質(zhì)大學(xué)(北京);2006年
相關(guān)碩士學(xué)位論文 前10條
1 孫艷茹;山東煙區(qū)綠肥作物冬牧70黑麥生長(zhǎng)的適宜水分溫度條件研究[D];中國(guó)農(nóng)業(yè)科學(xué)院;2015年
2 張正;電容法原位估測(cè)植物根系生物量應(yīng)用研究[D];西北農(nóng)林科技大學(xué);2015年
3 祝倩;晉西北黃土區(qū)三種植被類型土壤含水量變化特征研究[D];山西大學(xué);2014年
4 張廣波;基于3S技術(shù)的蘋(píng)果園信息提取與管理系統(tǒng)開(kāi)發(fā)[D];山東農(nóng)業(yè)大學(xué);2015年
5 徐志松;溫度對(duì)韭菜遲眼蕈蚊儲(chǔ)存蛋白的影響和土壤含水量對(duì)該害蟲(chóng)生存與生殖的影響[D];山東農(nóng)業(yè)大學(xué);2015年
6 柯麗娟;遙感反演土壤含水量在灌溉用水管理中的應(yīng)用研究[D];蘭州交通大學(xué);2015年
7 金夢(mèng)婷;基于合成孔徑雷達(dá)衛(wèi)星數(shù)據(jù)反演表層土壤含水量的研究[D];杭州師范大學(xué);2016年
8 胡煜;基于時(shí)域反射法土壤含水量測(cè)量方法研究[D];西安理工大學(xué);2009年
9 孫俊;基于環(huán)境一號(hào)衛(wèi)星的那曲地區(qū)青藏鐵路沿線區(qū)域土壤含水量反演研究[D];南京信息工程大學(xué);2011年
10 喻素芳;荒漠化地區(qū)土壤含水量遙感信息模型的研究[D];東北林業(yè)大學(xué);2005年
,本文編號(hào):2310815
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/2310815.html