V型肌球蛋白在大麗輪枝菌與棉花互作過程中的機制研究
[Abstract]:Objective: Cotton (Gyppium hirsutum) is an important economic crop in the world, and is also the main source of natural fiber. Verticillium Wilt is the main disease of cotton, which seriously affects the yield and quality of cotton and restricts the production of cotton. Verticillium wilt is a kind of soil-borne vascular disease, which can harm more than two hundred kinds of plants, including important cash crop cotton, tomato, lettuce and so on. Verticillium dahliae is the main disease of cotton in China, and its main pathogenic bacteria are the filamentous fungi of soil-borne and semi-living nutrition, mainly colonizing the wood of the plant, and the microsclerotium in its dormant form can survive in the soil for several decades. Therefore, people have not found effective measures to prevent verticillium wilt. In recent years, researchers have made extensive research on the virulence-related genes of the large-li-wheelset by genome, transcriptome, proteome, T-DNA mutant library and gene knockout. in particular, important progress has been made in that research of the infection structure of the large-li wheel branch fungus. There are more than 700 secreted proteins encoded by the genome of the L. rivulus L., but the research on the secreted protein is not very deep, nor the secretion process of the secretory protein is unclear. Only a few have been identified as being related to the pathogenicity of pathogenic bacteria. Due to the diversity of secretory proteins, the research is difficult, but the components related to the secretory pathway are relatively conservative, and the research on the relevant components of the secretory pathway will provide a new target for the prevention and treatment of verticillium wilt of cotton. The exocytosis is a traditional secretory pathway based on vesicle transport in a true nuclear biological cell, and there are some non-traditional secretory pathways. The nutrients and virulence related factors required for the growth of the fungus are transported to a specific location of the cytoplasmic membrane by way of vesicle transport. Vesicles are dependent on motor molecular omyosin Myosin V (Myo V) to provide power and energy for transport along the cell tracks provided by the microfilaments. Myosin V is relatively conserved in filamentous fungi, and has been well studied in the mode fungal yeasts and Aspergillus nidulans, but has not yet been studied in the large-leaf fungus. This study studied the function of V-type Myosin in the pathogenic process of pathogenic bacteria, hoping to provide a new theoretical basis for the prevention and treatment of verticillium wilt of cotton. Methods: (1) The V-type Myosin2 (Myo2) was found to be homologous to the L-type Myosin (Myto2), in which the V-type Myosin protein sequence in Aspergillus nidulatum was sequenced according to the reported model. The phylogenetic tree of V-type Myosin in filamentous fungi was constructed and constructed. (2) The single knockout mutant strain Vddmyo2 was obtained by Agrobacterium-mediated homologous recombination, and the colony morphology, germination rate and growth habit of mycelium were observed. (3) The expression vector of Myo2-GFP was constructed, and the mutant Vddmyo2/ Vd Myo2-GFP was obtained by transforming Vddmyo 2 strain. The space-time dynamic model of Myo2 was observed by rotating disc laser confocal microscope. (4) The process of invasion was observed by scanning electron microscope (SEM). (5) The host, cotton and Arabidopsis were infected by injection method and dip root method, and the difference of pathogenicity between mutant strain and control wild-type strain was analyzed. (6) By using the method of ultracentrengation and concentration, the secretion protein of the large-sized verticillium (mutant and wild-type control) was collected, the protein i TARQ mass spectrum experiment was carried out, the difference protein was screened by using the Saffold 4.0 software, and the difference protein GO analysis was performed by using the Blast2GO software. The functional classification of differential protein and the expression of differential protein were analyzed. Results and Conclusion: (1) The homology of V-type Myo2 with other filamentous fungi was relatively high, and the function was relatively conservative in filamentous fungi. The knockout mutant strain showed serious growth defect, the white mycelium was obviously reduced, the melanin increased, the microsclerotium increased, and the colony growth rate was slowed down. At the same time, the morphology of the conidiospore and the polarity of the mycelium are also seriously affected. The results showed that Myo2 was involved in the development of conidiospore and the process of polarity growth of mycelium. (2) Myo 2-GFP was a punctate in the cytoplasm, and was located at the top of the top of the hypha and co-located with Marker FM4-64 of the top body. The result further showed that Myo2 played an important role in the vesicle transport. (3) The host cotton and Arabidopsis inoculation experiment showed that the pathogenicity of mutant strain decreased significantly. The cotton stalk of the inoculated mutant strain has a relatively light vascular bundle sense, and the pathogenic bacteria can not be isolated in the stem cut-off, which indicates that Myo2 is necessary for the pathogenic force of the large-leaf fungus. The invasion experiment of Arabidopsis proves that the mutant strain can still invade the host cell, and it is estimated that the cause of the disease decrease may not be caused by the obstruction of the infection process, and the main reason may be that the functional defect of the vesicle transport during the secretion of the secreted protein after the loss of Myo2 may be the main reason. (4) Through the protein group data of the secretory protein, we found that the ability of Myo2 to secrete protein was reduced under the same conditions. There were significant differences in the transport and modification of carbohydrate and intracellular transport, secretion and vesicle transport. Therefore, Myo2 is regarded as an important component in the pathway of protein secretion, and it plays an important role in the process of interaction between the host plants and the host plants by modulating the secretion of secreted proteins related to the pathogenesis of the large-li-wheel-branched bacteria.
【學(xué)位授予單位】:石河子大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:S435.621.2
【相似文獻】
相關(guān)期刊論文 前10條
1 田李;陳捷胤;陳相永;汪佳妮;戴小楓;;大麗輪枝菌(Verticillium dahliae VdLs.17)分泌組預(yù)測及分析[J];中國農(nóng)業(yè)科學(xué);2011年15期
2 儲昭慶,賈軍偉,周向軍,陳曉亞;大麗輪枝菌分泌糖蛋白的分離及其致萎性研究[J];植物學(xué)報;1999年09期
3 張進霞;袁洪水;王士英;韓繼剛;朱寶成;;幾種氨基酸銅對大麗輪枝菌微菌核形成的抑制作用[J];棉花學(xué)報;2006年01期
4 田李;陳捷胤;汪佳妮;王金龍;戴小楓;;高效大麗輪枝菌(Verticillium dahliae)基因敲除體系的構(gòu)建[J];微生物學(xué)報;2011年07期
5 陳天子;袁洪波;楊郁文;劉藹民;張保龍;;農(nóng)桿菌介導(dǎo)轉(zhuǎn)化大麗輪枝菌的體系優(yōu)化[J];棉花學(xué)報;2011年06期
6 戴富明;王克榮;陸家云;;濕篩法和蔗糖懸浮法分離土壤中大麗輪枝菌(Verticillium dahliae)效果的比較[J];上海農(nóng)學(xué)院學(xué)報;1991年04期
7 肖紅利;桂月晶;祁偉彥;陳捷胤;李蕾;徐明;戴小楓;;大麗輪枝菌分泌蛋白提取方法比較[J];中國農(nóng)業(yè)科學(xué);2014年12期
8 王克榮,魏宏根,朱麗萍;大麗輪枝菌混合侵染棉花的研究[J];棉花學(xué)報;2001年03期
9 燕海潮;曾來濤;郭曉軍;胖鐵良;李術(shù)娜;朱寶成;;大麗輪枝菌頡頏細菌2-14菌株的鑒定[J];畜牧與飼料科學(xué);2009年04期
10 薛磊;薛泉宏;趙娟;申光輝;唐明;盧建軍;;大麗輪枝菌菌體對鏈霉菌胞外蛋白酶活性及抑菌效果的影響[J];棉花學(xué)報;2012年01期
相關(guān)會議論文 前10條
1 鄧晟;王彩月;張昕;林玲;趙明文;周益軍;;大麗輪枝菌的綠色熒光蛋白標(biāo)記及其根部定殖觀察[A];中國植物病理學(xué)會2012年學(xué)術(shù)年會論文集[C];2012年
2 魏鋒;余真真;楊家榮;徐向明;胡小平;;土壤中大麗輪枝菌微菌核的檢測與定量[A];中國植物病理學(xué)會2012年學(xué)術(shù)年會論文集[C];2012年
3 胡東芳;胡小平;;大麗輪枝菌微菌核萌發(fā)的表達譜特征[A];中國植物病理學(xué)會2011年學(xué)術(shù)年會論文集[C];2011年
4 李亞寧;魏艷敏;劉大群;楊文香;張汀;;棉花大麗輪枝菌(Verticillium dahliae)的血清學(xué)檢測——不同抗原的比較[A];中國植物病理學(xué)會2004年學(xué)術(shù)年會論文集[C];2004年
5 程穎慧;章桂明;王穎;徐浪;;黑白輪枝菌和大麗輪枝菌的基因芯片檢測方法[A];中國植物病理學(xué)會2008年學(xué)術(shù)年會論文集[C];2008年
6 陶杰;章桂明;程穎慧;姜子德;;輪枝菌基質(zhì)輔助激光解吸電離飛行時間質(zhì)譜分析[A];中國植物病理學(xué)會2008年學(xué)術(shù)年會論文集[C];2008年
7 馮自力;李志芳;師勇強;趙麗紅;朱荷琴;李彩紅;劉義杰;王玲飛;;分離自棉花的輪枝菌“種”的鑒定[A];中國棉花學(xué)會2013年年會論文集[C];2013年
8 張立英;黃國紅;劉大群;;棉花大麗輪枝菌RAPD遺傳多態(tài)性分析[A];中國植物病理學(xué)會第七屆代表大會暨學(xué)術(shù)研討會論文摘要集[C];2002年
9 賈芝琪;李穎章;;NO介導(dǎo)棉花懸浮細胞抗大麗輪枝菌毒素抗性反應(yīng)[A];中國植物生理學(xué)會第九次全國會議論文摘要匯編[C];2004年
10 鄭曉華;李穎章;;棉花愈傷組織細胞對大麗輪枝菌毒素(VD-toxin)抗性反應(yīng)的超微結(jié)構(gòu)觀察[A];中國植物生理學(xué)會全國學(xué)術(shù)年會暨成立40周年慶祝大會學(xué)術(shù)論文摘要匯編[C];2003年
相關(guān)博士學(xué)位論文 前10條
1 徐明;高毒力大麗輪枝菌特異分泌蛋白基因功能研究[D];中國農(nóng)業(yè)科學(xué)院;2015年
2 張鍵;向日葵大麗輪枝菌T-DNA突變體庫的構(gòu)建及微菌核形成和致病力相關(guān)基因的研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2016年
3 齊希梁;棉花黃萎病菌高效基因敲除體系的建立與Thit功能的研究[D];石河子大學(xué);2016年
4 Ahmed ABD ELALEEM;大麗輪枝菌插入突變體庫的構(gòu)建及分析[D];西北農(nóng)林科技大學(xué);2015年
5 何獻君;大麗輪枝菌Vd991致病機理研究[D];中國農(nóng)業(yè)大學(xué);2016年
6 馮志迪;V型肌球蛋白在大麗輪枝菌與棉花互作過程中的機制研究[D];石河子大學(xué);2017年
7 肖紅利;棉花組織誘導(dǎo)體系中大麗輪枝菌分泌蛋白分析及其致病性研究[D];中國農(nóng)業(yè)科學(xué)院;2014年
8 Sami Mohammed Adam Mohammed;大麗輪枝菌毒力基因的篩選與功能鑒定[D];中國農(nóng)業(yè)科學(xué)院;2014年
9 劉實忠;利用模式植物擬南芥鑒定和分離大麗輪枝菌外泌毒素中的致萎活性因子[D];中國農(nóng)業(yè)大學(xué);2005年
10 柴友榮;植物抗大麗輪枝菌受體類蛋白基因及甘露糖結(jié)合型凝集素基因的克隆與表達[D];西南農(nóng)業(yè)大學(xué);2003年
相關(guān)碩士學(xué)位論文 前10條
1 王新艷;大麗輪枝菌致病相關(guān)突變體的篩選及致病基因VdCYP1功能初步研究[D];中國農(nóng)業(yè)科學(xué)院;2015年
2 趙玉蘭;利用基因沉默驗證大麗輪枝菌糖代謝相關(guān)基因的致病力[D];中國農(nóng)業(yè)科學(xué)院;2015年
3 師勇強;常用藥劑對大麗輪枝菌微菌核的影響[D];寧夏大學(xué);2015年
4 毛建才;聚多糖脫乙酰酶基因家族VdpdaAs在大麗輪枝菌中的功能分析[D];石河子大學(xué);2015年
5 胡惠蘭;轉(zhuǎn)GFP基因大麗輪枝菌的構(gòu)建及侵染棉花過程的研究[D];南京農(nóng)業(yè)大學(xué);2012年
6 王曉楠;綠色熒光蛋白標(biāo)記的大麗輪枝菌對棉花葉片和單子葉植物的侵染研究[D];南京農(nóng)業(yè)大學(xué);2014年
7 王凱;帶有GFP標(biāo)記的馬鈴薯大麗輪枝菌的獲得及其在馬鈴薯中侵染過程研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2016年
8 李宛霖;棉花黃萎病菌致病基因VDAG9119和VdIsc1的功能分析[D];南京農(nóng)業(yè)大學(xué);2015年
9 趙鳳軒;綠色熒光蛋白標(biāo)記的大麗輪枝菌的獲得及其在棉花中侵染過程研究[D];中國農(nóng)業(yè)科學(xué)院;2010年
10 韓紹輝;農(nóng)桿菌介導(dǎo)的大麗輪枝菌的遺傳轉(zhuǎn)化[D];河北農(nóng)業(yè)大學(xué);2009年
,本文編號:2282384
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/2282384.html